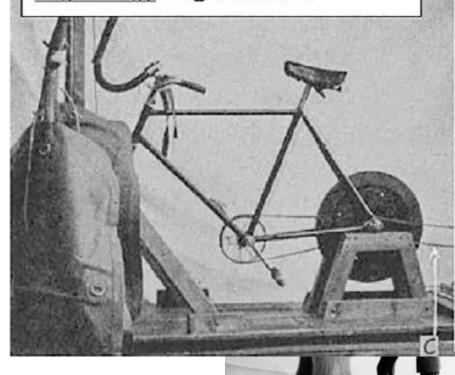


31st Annual CCSU Sports Medicine Symposium

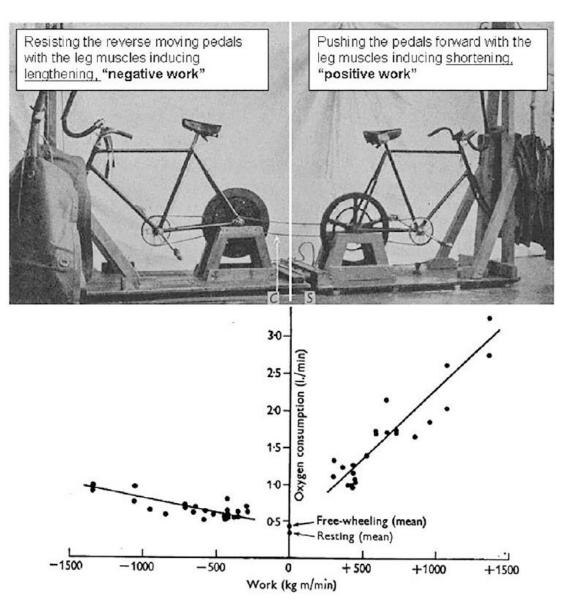
Turning Negatives Into Positives: A New Approach to Eccentric Training

Disclosure & Conflict of Interest

• The presenter has no conflicts of interest or financial relationships to disclose.


Eccentric Exercise

- Historical perspective
- Eccentric muscle mechanics
- Fallacies vs. Facts
 - Injury/Damage vs. Rehab/Benefits
- Safety, Feasibility & Application
 - Contribution to Injury, Prevention, Rehabilitation & Sport Performance


Push Me, Pull You

Resisting the reverse moving pedals with the leg muscles inducing <u>lengthening</u>, "negative work"

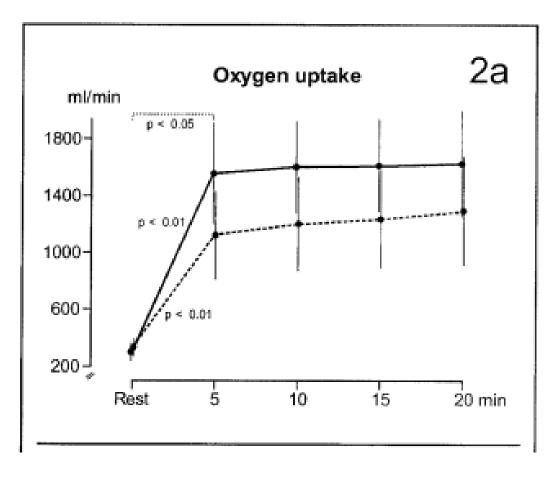
Pushing the pedals forward with the leg muscles inducing <u>shortening</u>, "positive work"

Two Bikes, One Chain – Abbott, Bigland & Ritchie (1952)

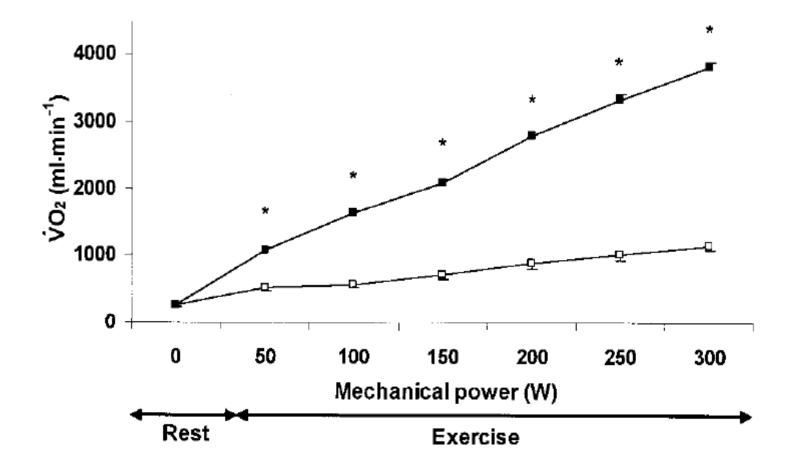
What is the COST of WORK?

- Energy cost of doing work
 Fenn Effect (1924)
 - Energy required for force production is increased when muscles shorten

Positive Work

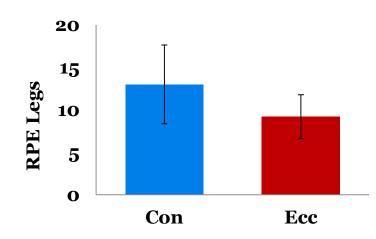

 Negative Fenn Effect
 Energy liberated is reduced when muscle is stretched while contracting

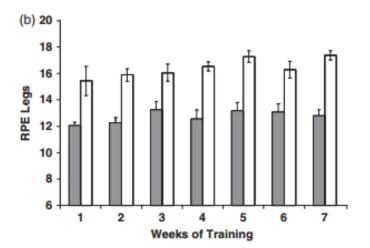
Negative Work


Why would Con exercise elicit a greater RPE than Ecc exercise?

Metabolic Cost

Meyer et al. (2003) MSSE

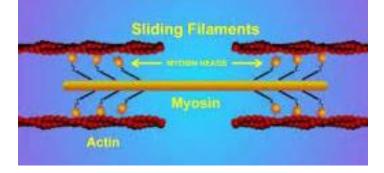

Lower Metabolic Demand for Ecc Ex

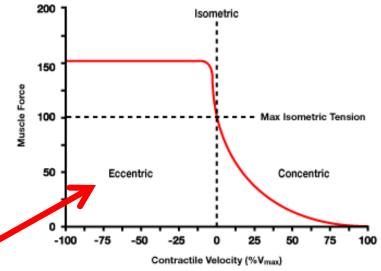


Dufour et al. (2004) Med Sci Sports Exerc

Responses to Con vs. Ecc Exercise

Rating of Perceived Exertion

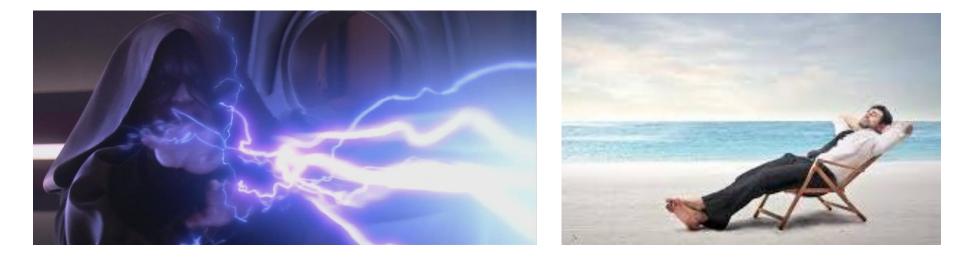



EXS 216 Kinesiology (2015) Elmer et al. (2012) *Scan J Med Sc Sports*

Actin-Myosin Bonds???

- Chemical reactions that consume ATP are not simply reversed during lengthening contractions
- Speculation that actin-myosin bonds are disrupted mechanically
- Thomas McMahon (1995)

If you only knew the power of the dark side.



Muscle Force-Velocity Curve

Two Defining Properties!!!

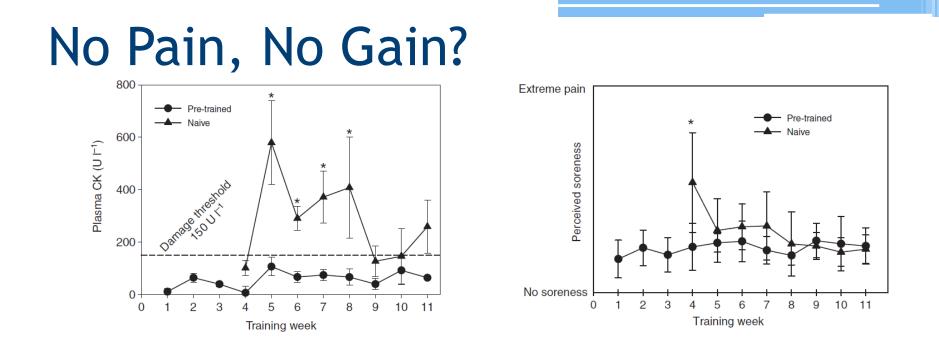
- Force production is uniquely high
- Energy cost to produce force is uniquely low

LaStayo et al. (2014) JAP

Fallacies vs. Facts of Eccentric Muscle Contraction

- Injury/Damage vs. Rehab/Benefits
 1000 vs. 50 citations
 - Delay Onset of Muscle Soreness
 - No Pain, No Gain???

Eccentric Training - CAUTION!!!


- Rhabdomyolysis
 - Condition in which damaged skeletal muscle (myoglobin) breaks down.
 - Myoglobin released into the bloodstream
 - Kidney failure
 - Symptoms
 - Muscle pain
 - Vomiting
 - Confusion

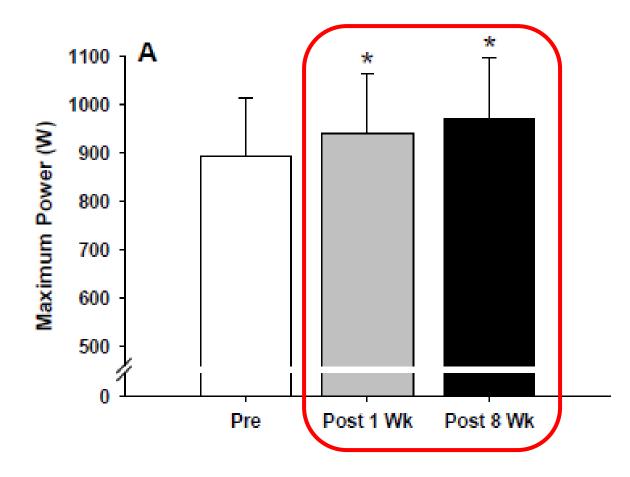
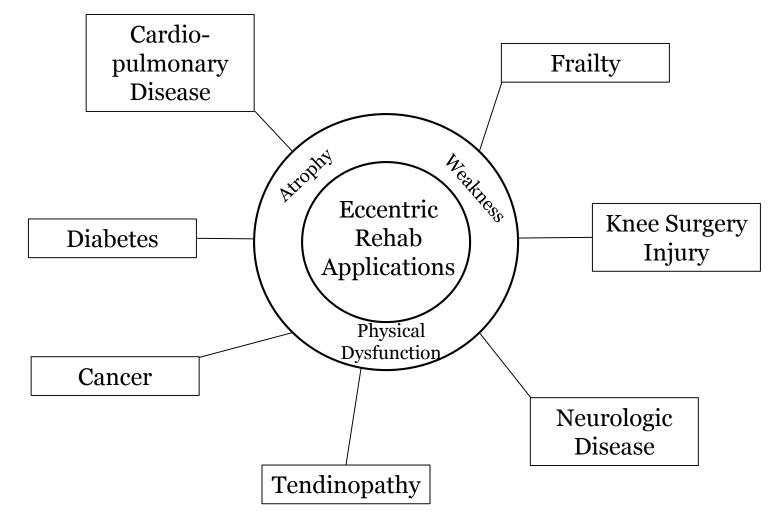


Table 2.	Quadriceps	muscle	volume	and	isometric strength	

	I	Pre-trained group (PT)			Naive group (NA)		
	Pre-training	Post-training	%Δ	Pre-training	Post-training	%Δ	
Quadriceps volume (cm ³)	1651±145	1751±141	6.5*	1906±175	2041±176	7.5*	
Quadriceps strength (N)	104.5±64.5	130.5±28.5	24.8*	108.4±81	136.4±118.6	25.8*	


Mean values (*N*=14, ±s.e.m.) of the PT and NA groups before and after the 12-week resistance training. *Significant difference (*P*<0.05) was seen within the groups for pre- and post-cross volume values as well as pre- and post-strength results. No statistical difference (*P*>0.05), however, was present between the NA and PT groups for either muscle volume or strength.

Flann et al. (2011) J Exp Bio

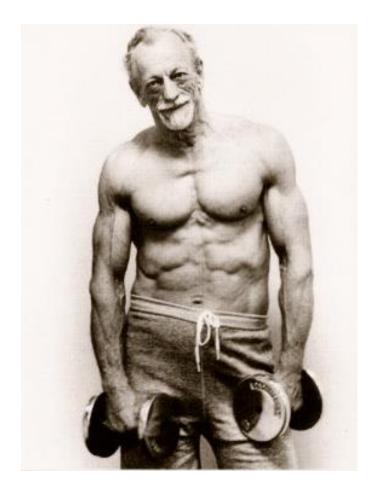
Leong et al. (2013) *IJSM*

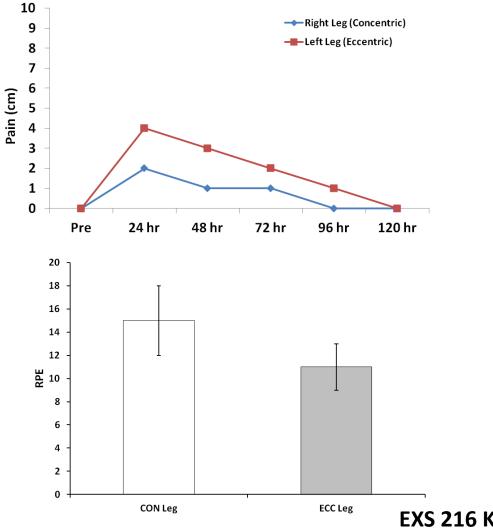
Safety & Feasibility in Rehab

LaStayo et al. (2014) JAP Andres et al. (2008) Clin Orthop Relat Res

Improvements in Muscular & Multi-Joint Function

- Muscle Size
- Muscular Function
- Mobility





Application of Eccentric Training

- Progression
- Mode

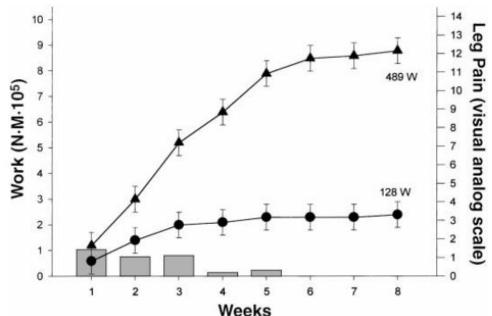
Acute Responses to Ecc Exercise

EXS 216 Kinesiology (Fall 2015)

Responses to Chronic Eccentric Training

Muscle Soreness

10


8

6

4

2

Muscle Soreness (cm)

LaStayo et al. (2000) *Am J Physiol Regul Integr Comp Physiol*

Leong et al. (2013) *IJSM*

4

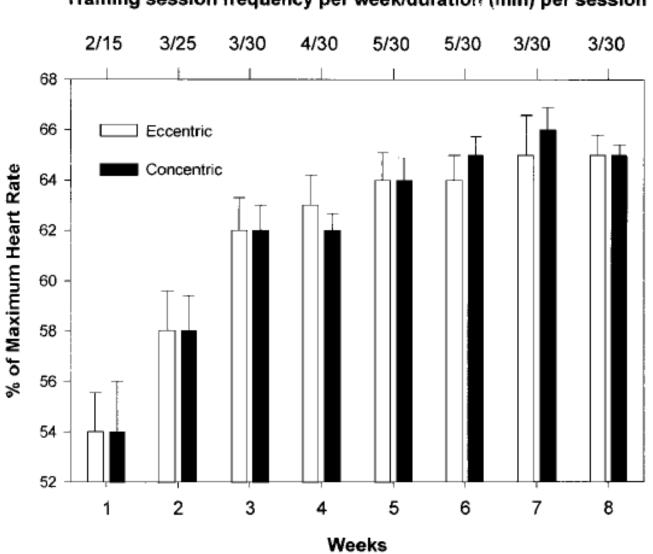
Weeks of Training

5

6

7

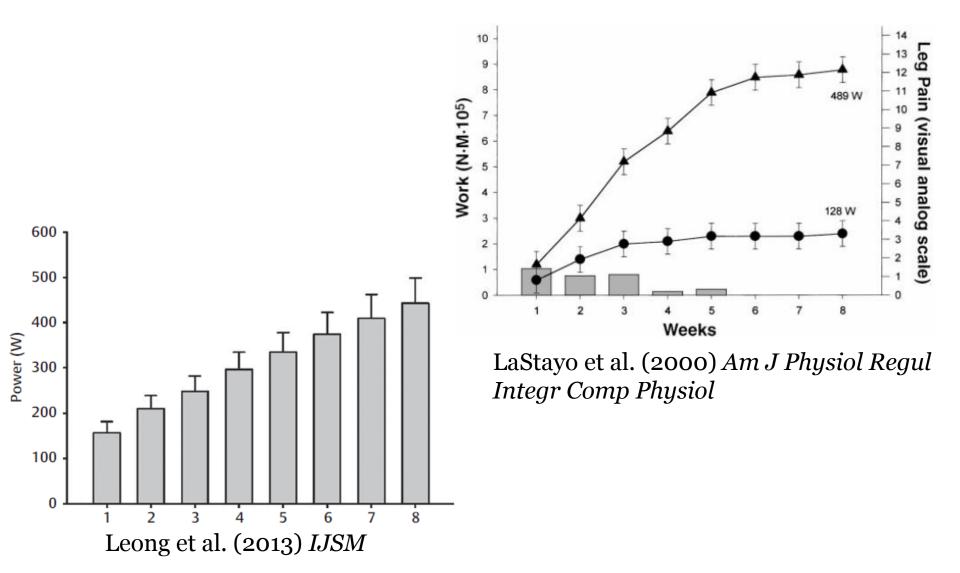
3

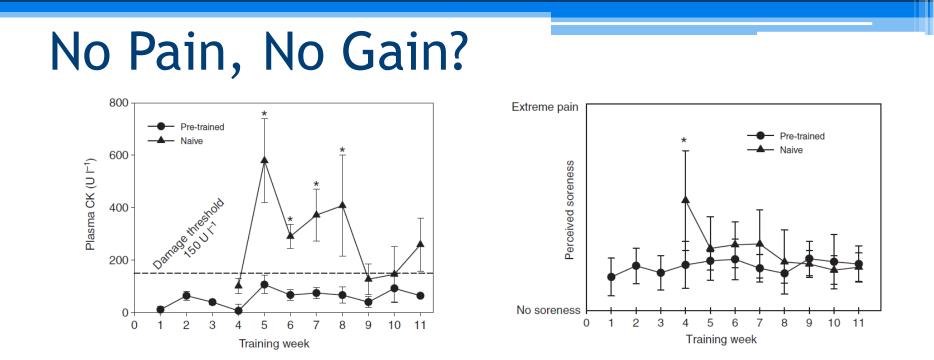

2

Weeks of Training	% Baseline P _{max}	Duration (min)						
1	20	5						
2	25	6						
3	30	7						
4	35	8						
5	40	9						
6	45	9.5						
7	50	10						
8	55	10.5						
		ſ						

Table 2.Progression of eccentric cycling training intensity and duration.Note that all training was performed at 60 rpm.

P_{max}: Maximum concentric cycling power.


Leong et al. (2013) *IJSM*

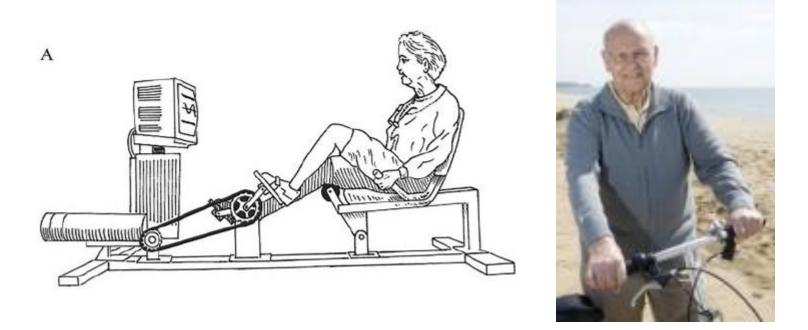


Training session frequency per week/duration (min) per session

LaStayo et al. (2000) Am J Physiol Regul Integr Comp Physiol

Eccentric Training Intensity

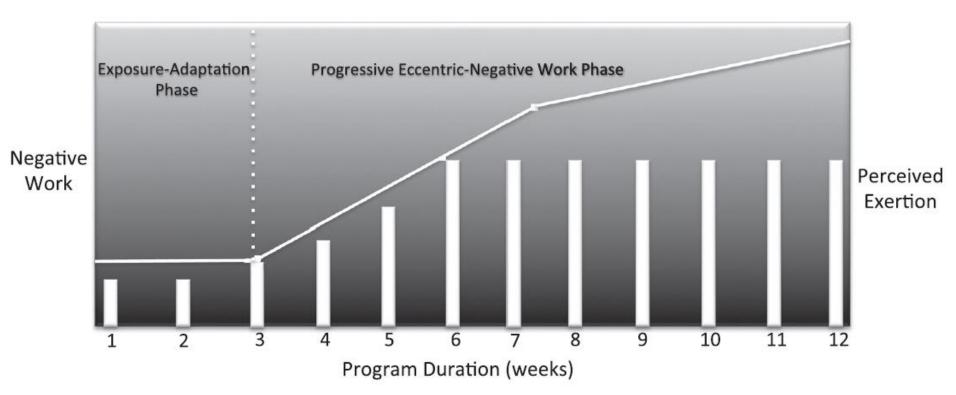
Table 2. Quadriceps muscle volume and isometric strength	Table 2.	Quadriceps	muscle	volume	and	isometric strength
--	----------	------------	--------	--------	-----	--------------------


	I	Pre-trained group (PT)			Naive group (NA)		
	Pre-training	Post-training	%Δ	Pre-training	Post-training	%Δ	
Quadriceps volume (cm ³)	1651±145	1751±141	6.5*	1906±175	2041±176	7.5*	
Quadriceps strength (N)	104.5±64.5	130.5±28.5	24.8*	108.4±81	136.4±118.6	25.8*	

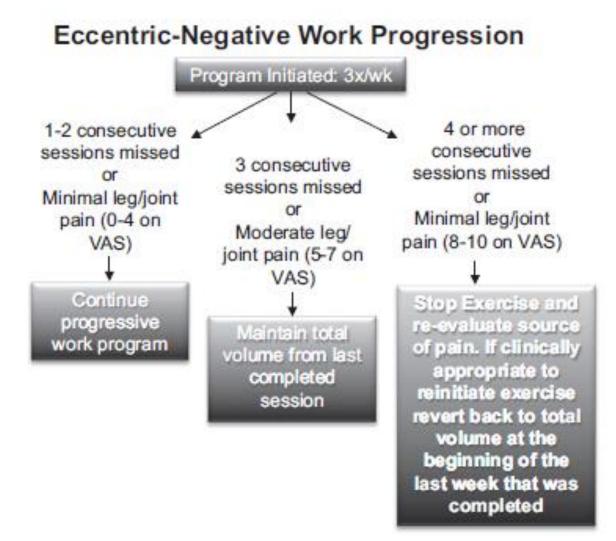
Mean values (*N*=14, ±s.e.m.) of the PT and NA groups before and after the 12-week resistance training. *Significant difference (*P*<0.05) was seen within the groups for pre- and post-cross volume values as well as pre- and post-strength results. No statistical difference (*P*>0.05), however, was present between the NA and PT groups for either muscle volume or strength.

Flann et al. (2011) J Exp Bio

Eccentric Training


Frail elderly adult patients, mean age of 80.2 years

"...maintained 216 W for 15 minutes, and the least frail maintained a workload in excess of 400 W for 20 minutes..."


LaStayo et al. (2003) J Gerntol

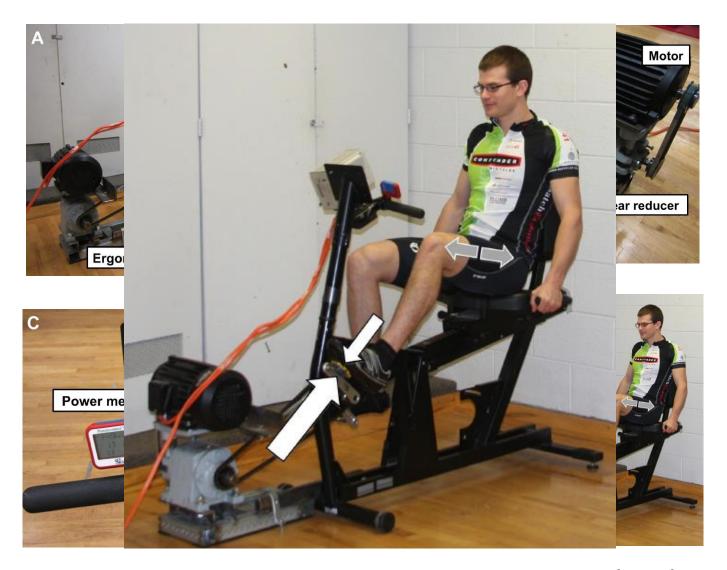
12 week Progression

LaStayo et al. (2014) JAP

Algorithm for temporary pain, adverse reactions & missed sessions

How do we perform Ecc Training?

- Modes of Ecc Ex
 - Be Justin Bieber?
 - Agaton
 - Isokinetic Dynamometer
 - Eccentric Cycle Ergometer



Eccentric Cycle Ergometer

Elmer & Martin (2012) J Appl Biomech

Eccentric cycling is a potent stimulus for improving muscular function in:

- ✓ Young healthy individuals
- ✓ Athletes
- ✓ Patients with tendinopathies
- ✓ Frail and elderly
- ✓ ACL patients
- ✓ Parkinson's disease patients
- ✓ Cancer survivors
- ✓ Total knee replacement patients
- **????** Astronauts & Patients with low bone mass

LaStayo et al. (2003) J Gerntol Dibble et al. (2006) Mov Discord Gerber et al. (2009) Phys Therp LaStayo et al. (2010) J Geriatr Phys Ther Gross et al. (2010) Int J Sports Med Elmer et al. (2011) Scand J Med Sci Sports

Eccentric Exercise for Preservation of Muscle and Bone

Chee Hoi Leong, Ernie Rimer, and James C. Martin. Neuromuscular Function Laboratory Department of Exercise & Sport Science College of Health

Exposure to Microgravity Reduced Muscle Mass and Function & Reduced Bone Mineral Density

Summary

- Intervention geared toward individuals with:
 - Low muscle mass reserves and quality
 - High mobility impairments
 - Dwindling self-independence
- Few countermeasures are superior to traditional resistance exercise
 - Hypertrophy and attenuate muscular decline
- Safety, Feasibility & Clinical Benefits of Eccentric Exercise becoming more apparent
- Further development of parameters to optimize:
 - 1. Intensity
 - 2. Duration
 - 3. Modes

Thank You!!!

References

- Abbott, B. C., Brenda Bigland, and J. M. Ritchie. "The Physiological Cost of Negative Work." *The Journal of Physiology* 117, no. 3 (July 28, 1952): 380–90. doi:10.1113/jphysiol.1952.sp004755.
- Andres, Brett M., and George A. C. Murrell. "Treatment of Tendinopathy: What Works, What Does Not, and What Is on the Horizon." *Clinical Orthopaedics and Related Research* 466, no. 7 (July 2008): 1539–54. doi:10.1007/s11999-008-0260-1.
- Dufour, S. P., E. Lampert, S. Doutreleau, E. Lonsdorfer-Wolf, V. L. Billat, F. Piquard, and R. Richard. "Eccentric Cycle Exercise: Training Application of Specific Circulatory Adjustments." *Med Sci Sports Exerc* 36, no. 11 (2004): 1900–1906.
- Elmer, S. J., S. Hahn, P. McAllister, C. Leong, and J. C. Martin. "Improvements in Multi-Joint Leg Function Following Chronic Eccentric Exercise." Scand J Med Sci Sports 22, no. 5 (2012): 653–61.
- Elmer, S. J., and P. C. LaStayo. "Revisiting the Positive Aspects of Negative Work." *Journal of Experimental Biology* 217, no. 14 (July 15, 2014): 2434–36. doi:10.1242/jeb.092247.
- Elmer, S. J., and J. C. Martin. "Construction of an Isokinetic Eccentric Cycle Ergometer for Research and Training." J Appl Biomech, 2012, [Epub ahead of print].
- Flann, K. L., P. C. LaStayo, D. A. McClain, M. Hazel, and S. L. Lindstedt. "Muscle Damage and Muscle Remodeling: No Pain, No Gain?" J Exp Biol 214, no. Pt 4 (2011): 674-79.
- Gerber, J. P., R. L. Marcus, L. E. Dibble, P. E. Greis, R. T. Burks, and P. C. Lastayo. "Safety, Feasibility, and Efficacy of Negative Work Exercise via Eccentric Muscle Activity Following Anterior Cruciate Ligament Reconstruction." J Orthop Sports Phys Ther 37, no. 1 (2007): 10–18.
- Gross, M., F. Luthy, J. Kroell, E. Muller, H. Hoppeler, and M. Vogt. "Effects of Eccentric Cycle Ergometry in Alpine Skiers." Int J Sports Med 31, no. 8 (2010): 572-76.
- LaStayo, P. C., G. A. Ewy, D. D. Pierotti, R. K. Johns, and S. Lindstedt. "The Positive Effects of Negative Work: Increased Muscle Strength and Decreased Fall Risk in a Frail Elderly Population." *J Gerontol A Biol Sci Med Sci* 58, no. 5 (2003): M419–24.
- Lastayo, P. C., S. Larsen, S. Smith, L. Dibble, and R. Marcus. "The Feasibility and Efficacy of Eccentric Exercise with Older Cancer Survivors: A Preliminary Study." J Geriatr Phys Ther 33, no. 3 (2010): 135–40.
- LaStayo, P. C., D. J. Pierotti, J. Pifer, H. Hoppeler, and S. L. Lindstedt. "Eccentric Ergometry: Increases in Locomotor Muscle Size and Strength at Low Training Intensities." Am J Physiol 278, no. 5 (2000): R1282–88.
- LaStayo, P., R. Marcus, L. Dibble, F. Frajacomo, and S. Lindstedt. "Eccentric Exercise in Rehabilitation: Safety, Feasibility, and Application." *Journal of Applied Physiology* 116, no. 11 (June 1, 2014): 1426–34. doi:10.1152/japplphysiol.00008.2013.
- Leong, C., W. McDermott, S. Elmer, and J. Martin. "Chronic Eccentric Cycling Improves Quadriceps Muscle Structure and Maximum Cycling Power." International Journal of Sports Medicine 35, no. 07 (November 14, 2013): 559–65. doi:10.1055/s-0033-1358471.