CCSU Regional Math Competition, 2016 SOLUTIONS I

Problem 1. For each real number $t \in[-1,1]$ let P_{t} be the parabola in the $x y$-plane that has axis parallel to the y-axis, passes through the points $(0,0)$ and $(4, t)$, and has a tangent line with a slope $t-1$ at the point $(4, t)$. Find the smallest possible y-coordinate for the vertex of P_{t}.

Solution. For $t \in[-1,1]$, let $p_{t}(x)=a x^{2}+b x+c$ be the quadratic function whose graph is the parabola P_{t}. Since $p_{t}(0)=0$ and $p_{t}(4)=t$, we have $c=0$ and $16 a+4 b=t$. From $p^{\prime}{ }_{t}(x)=2 a x+b$ and $p^{\prime}{ }_{t}(4)=t-1$, we have $8 a+b=t-1$. Hence $a=\frac{1}{16}(3 t-4)$ and $b=\frac{1}{2}(-t+2)$. Thus,

$$
p_{t}(x)=\frac{3 t-4}{16} x^{2}+\frac{-t+2}{2} x .
$$

The y-coordinate of the vertex of P_{t} will be given by the formula

$$
p_{t}\left(\frac{-b}{2 a}\right)=p_{t}\left(\frac{4 t-8}{3 t-4}\right)=\frac{(t-2)^{2}}{4-3 t}
$$

In order to find the lowest possible y-coordinate of the vertex of P_{t}, we need to find the minimum value of the function $f(t)=\frac{(t-2)^{2}}{4-3 t}$, when $t \in[-1,1]$. The derivative of $f(t)$ with respect to t is given by the formula

$$
f^{\prime}(t)=\frac{-3 t^{2}+8 t-4}{(4-3 t)^{2}}
$$

and hence, $f^{\prime}(t)=0$ when $t=2$ or $t=\frac{2}{3}$. Since $2 \notin[-1,1]$ and

$$
f(1)=1, \quad f(-1)=\frac{9}{7}, \quad f\left(\frac{2}{3}\right)=\frac{8}{9}
$$

we conclude that the lowest possible y-coordinate of the vertex of P_{t} is $\frac{8}{9}$.
Problem 2. Inside a square of side 2 there are 7 polygons each of area 1. Show that there are 2 polygons that overlap over a region of area at least $\frac{1}{7}$.

Solution. Let $P_{1}, P_{2}, \ldots, P_{7}$ be the 7 polygons and denote by $|R|$ the area of the region R. Assume that any 2 of them share an area $<1 / 7$. Then

$$
\begin{gathered}
\left|P_{1} \cup P_{2}\right|=\left|P_{1}\right|+\left|P_{2}\right|-\left|P_{1} \cap P_{2}\right|>2-1 / 7=13 / 7, \\
\left|P_{1} \cup P_{2} \cup P_{3}\right|=\left|P_{1} \cup P_{2}\right|+\left|P_{3}\right|-\left|\left(P_{1} \cup P_{2}\right) \cap P_{3}\right|>13 / 7+1-2 / 7=18 / 7 .
\end{gathered}
$$

Following the pattern, the union of all polygons will cover an area more than

$$
\begin{aligned}
& 18 / 7+1-3 / 7=22 / 7 \\
& 22 / 7+1-4 / 7=25 / 7 \\
& 25 / 7+1-5 / 7=27 / 7 \\
& 27 / 7+1-6 / 7=28 / 7=4
\end{aligned}
$$

But the area of the square is 4 and the polygons cannot cover an area more than 4. Hence, our assumption is false and the opposite statement is true.

Problem 3. Consider two matrices $A(m \times n)$ and $B(n \times m)$ with real entries, such that $m \geq n \geq 2$. Assume there exist an integer $k \geq 1$ and real numbers $a_{0}, a_{1}, \ldots, a_{k}$ such that

$$
\begin{aligned}
& a_{k}(A B)^{k}+a_{k-1}(A B)^{k-1}+\cdots+a_{2}(A B)^{2}+a_{1}(A B)+a_{0} I_{m}=O_{m} \\
& a_{k}(B A)^{k}+a_{k-1}(B A)^{k-1}+\cdots+a_{2}(B A)^{2}+a_{1}(B A)+a_{0} I_{n} \neq O_{n}
\end{aligned}
$$

where I_{m}, I_{n} are the identity matrices and O_{m}, O_{n} are the zero matrices of the corresponding sizes. Prove that $a_{0}=0$.

Solution I. Assume $a_{0} \neq 0$. Divide the first identity by a_{0} and factor $A B$:

$$
A B\left(-\frac{a_{k}}{a_{0}}(A B)^{k-1}-\frac{a_{k-1}}{a_{0}}(A B)^{k-2}-\cdots-\frac{a_{2}}{a_{0}}(A B)-\frac{a_{1}}{a_{0}} I_{m}\right)=I_{m}
$$

It follows from this that $A B$ is invertible, and since it is an $m \times m$ matrix, it has to have rank m. So $\operatorname{rank}(A B)=m \geq n$. However, using the rank inequality, we know that $m=\operatorname{rank}(A B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\} \leq n$, so we have that $m=n$ and $A, B, A B$, and $B A$ are all invertible square matrices.

After multiplying the identity

$$
a_{k}(A B)^{k}+a_{k-1}(A B)^{k-1}+\cdots+a_{2}(A B)^{2}+a_{1}(A B)+a_{0} I_{n}=O_{n}
$$

to the left with B and to the right with A we obtain

$$
a_{k}(B A)^{k+1}+a_{k-1}(B A)^{k}+\cdots+a_{2}(B A)^{3}+a_{1}(B A)^{2}+a_{0}(B A)=O_{n} .
$$

Finally, after multiplying the whole expression by $(B A)^{-1}$ we obtain that

$$
a_{k}(B A)^{k}+a_{k-1}(B A)^{k-1}+\cdots+a_{2}(B A)^{2}+a_{1}(B A)+a_{0} I_{n}=O_{n}
$$

which contradicts the hypothesis. Therefore $a_{0}=0$.
Solution II. Observe that $(A B)^{j}=A(B A)^{j-1} B$ for any $j \geq 1$ and thus, the first equation gives

$$
A\left(a_{k}(B A)^{k-1}+a_{k-1}(B A)^{k-2}+\cdots+a_{1} I_{n}\right) B=-a_{0} I_{m}
$$

and if we denote $a_{k}(B A)^{k-1}+a_{k-1}(B A)^{k-2}+\cdots+a_{1} I_{n}$ by L, the two equations can be written as

$$
A L B=-a_{0} I_{m}, \quad L B A \neq-a_{0} I_{n} .
$$

If $a_{0} \neq 0$, it follows that A is the matrix of a surjective linear map from \mathbb{R}^{n} onto \mathbb{R}^{m} and since $m \geq n$, we deduce that $m=n$ and A is invertible. In particular, A commutes with $L B$ and thus, the second condition contradicts the first one. This proves that $a_{0}=0$.

CCSU Regional Math Competition, 2016 SOLUTIONS II

Problem 4. Show that the area of the region $M X Y N U Z$ equals the area of the parallelogram $A B C D$ where the lines $\overleftrightarrow{A Y}, \overleftrightarrow{B Z}, \overleftrightarrow{N U}$ are perpendicular to the line $\overleftrightarrow{A U}$ and the lines $\overleftrightarrow{D X}, \overleftrightarrow{N Y}$ are perpendicular to the line $\overleftrightarrow{A Y}$. The segments $\overline{D X}, \overline{B Z}$ meet at the point M and their endpoints are on the sides of the polygon $A Y N U$ as in the figure.

Solution I. The components of the vector $\overrightarrow{A B}$ are $A Y, A Z$ and the components of the vector $\overrightarrow{A D}$ are $A X, A U$. Hence, the area of the parallelogram $A B C D$ is the determinant

$$
\operatorname{det}\left(\begin{array}{cc}
A Y & A X \\
A Z & A U
\end{array}\right)=A Y \times A U-A X \times A Z
$$

The area of the region $M X Y N U Z$ is the difference between areas of two rectangles: $A Y N U$ and $A X M Z$, and this difference agrees with the determinant above, proving the statement.

Solution II. If R is a region in the plane, then by $|R|$ we will denote its area. Since two triangles with the same base and height have the same area, $|A B Y|=|A M Y|$ and $|A D U|=|A M U|$. Since each diagonal splits the rectangle into two triangles of the same area, we conclude that

$$
\begin{aligned}
|M X Y N U Z| & =2|M U Z|+2|M X Y|+2|B N D| \\
|M X A Z| & =|M A X|+|M A Z|, \\
|B A Y| & =|M A X|+|M X Y|, \\
|A D U| & =|M A Z|+|M U Z|, \\
|A B D| & =|A Y N U|-|A D U|-|B A Y|-|B N D| .
\end{aligned}
$$

Combining these equations we conclude that

$$
\begin{aligned}
|A B D| & =|A Y N U|-|M A Z|-|M U Z|-|M A X|-|M X Y|-|B N D| \\
& =|A Y N U|-|M X A Z|-\frac{1}{2}|M X Y N U Z|=\frac{1}{2}|M X Y N U Z|
\end{aligned}
$$

Since $|A B C D|=2|A B D|$, our claim is proved.
Solution III. Denote the intersection point between the segments $\overline{M X}$ and $\overline{A B}$ by S and the intersection point between the line $\overleftrightarrow{A B}$ and the perpendicular from D to $\overleftrightarrow{A B}$ by P (see the figure below). Let also the line through S parallel to $\overleftrightarrow{A Y}$ intersect $\overline{A Z}$ at A^{\prime} and $\overline{Y B}$ at B^{\prime}. Notice that $\triangle A X S$ and $\triangle B M S$ are similar and therefore $A X \times M S=X S \times M B$ and since $A X=Z M$ and $M B=X Y$, we have $M Z \times M S=X S \times X Y$. Therefore $Z M S A^{\prime}$ and $X Y B^{\prime} S$ have the same areas, thus $M X Y N U Z$ and $A^{\prime} B^{\prime} N U$ have the same areas. Now notice that $\triangle A Y B$ and $\triangle D P S$ are similar and therefore $A Y \times D S=A B \times D P$. Since $A Y=A^{\prime} B^{\prime}$, we have that $A^{\prime} B^{\prime} N D$ and $A B C D$ have the same areas. The proof is completed.

Solution IV. Solution without words.

Problem 5. Compute the integral

$$
\int_{0}^{\pi / 4} \ln (1+\tan x) d x
$$

Solution. Using the identities

$$
\begin{aligned}
1+\tan x & =\frac{\sin x+\cos x}{\cos x} \\
\ln \left(\frac{\sin x+\cos x}{\cos x}\right) & =\ln (\sin x+\cos x)-\ln \cos x \\
\sin x+\cos x & =\sqrt{2} \sin \left(\frac{\pi}{4}+x\right)
\end{aligned}
$$

we separate the given integral into three parts as follows:

$$
\begin{aligned}
& \int_{0}^{\pi / 4} \ln (1+\tan x) d x \\
& =\int_{0}^{\pi / 4} \ln (\sin x+\cos x) d x-\int_{0}^{\pi / 4} \ln \cos x d x \\
& =\int_{0}^{\pi / 4} \ln \left(\sqrt{2} \sin \left(\frac{\pi}{4}+x\right)\right) d x-\int_{0}^{\pi / 4} \ln \cos x d x \\
& =\int_{0}^{\pi / 4} \ln \sqrt{2} d x+\int_{0}^{\pi / 4} \ln \left(\sin \left(\frac{\pi}{4}+x\right)\right) d x-\int_{0}^{\pi / 4} \ln \cos x d x \\
& =\frac{\pi \ln \sqrt{2}}{4}+\int_{0}^{\pi / 4} \ln \left(\sin \left(\frac{\pi}{4}+x\right)\right) d x-\int_{0}^{\pi / 4} \ln \cos x d x .
\end{aligned}
$$

The change of variables $x=\frac{\pi}{4}-t$ shows that the last two integrals are equal and therefore they cancel out. Thus, the answer is $\frac{\pi \ln \sqrt{2}}{4}=\frac{\pi \ln 2}{8}$.

Problem 6. Let f be the function defined recursively by $f(0)=1$ and $f(n)=1+n f(n-1)$ for each positive integer n. Find the smallest prime divisor of $f(4 \times 30+2016)$.

Solution. For any prime number p and nonnegative integer k we can prove by induction on r that

$$
f(k p+r) \equiv f(r) \quad \bmod p
$$

for any nonnegative integer r. The base case $r=0$ follows from

$$
f(k p)=1+k p f(k p-1) \equiv 1 \quad \bmod p
$$

and $f(0)=1$. The induction step " r implies $r+1$ " follows from

$$
f(k p+r+1)=1+(k p+r+1) f(k p+r) \equiv 1+(r+1) f(r) \bmod p
$$

and $f(r+1)=1+(r+1) f(r)$. Observe that p could be also any positive integer. Since $N=4 \times 30+2016=2136$ satisfies the following congruences

$$
\begin{array}{lllll}
N \equiv 0 & \bmod 2, & N \equiv 0 & \bmod 3, & N \equiv 1 \\
\bmod 5, \\
N \equiv 1 & \bmod 7, & N \equiv 2 & \bmod 11, & N \equiv 4
\end{array} \bmod 13,
$$

and $f(0)=1, f(1)=2, f(2)=5$, and $f(4)=65 \equiv 0 \bmod 13$, we conclude that $f(N)$ satisfies the following congruences

$$
\begin{aligned}
& f(N) \equiv 1 \quad \bmod 2, \quad f(N) \equiv 1 \quad \bmod 3, \quad f(N) \equiv 2 \bmod 5, \\
& f(N) \equiv 2 \quad \bmod 7, \quad f(N) \equiv 5 \bmod 11, \quad f(N) \equiv 0 \bmod 13 .
\end{aligned}
$$

Therefore the smallest prime divisor of $f(2136)$ is 13 .

