
CCSU Regional Math Competition, 2015

SOLUTIONS I

Problem 1. Suppose the vertices of a hexagon are labeled by the integers 1
through 6, each used just once. For each edge, the absolute difference of the
labels at the endpoints is an element of {2, 3, 4}. Furthermore, the sum of
labels at diametrically opposite vertices is never 7. If one edge is chosen at
random, what is the probability that the absolute difference of its endpoint
labels is 2?

Solution. We can systematically work out all the possible labelings. We
start at the vertex labeled 1, and work sequentially around the perimeter of
the hexagon, always respecting the ‘absolute difference’ constraint. (It makes
no difference if we proceed clockwise or counter-clockwise.) If we view the
sequence 1,2,3,4,5,6 cyclically, then the constraint simply says that adjacent
vertices cannot be labeled by consecutive integers.

The initial label 1 can be followed by either 3, 4, or 5; we track each of
these cases separately. 13 can be followed by 5 or 6, yielding two sub-cases.
135 can be followed only by 2, and then 1352 can be extended to just one
full labeling, 135264. 136 can be followed by 2 or 4. 1362 leads nowhere,
because the two remaining integers are consecutive; 1364 extends to just one
full labeling, 136425. This completes the analysis of case 13. Cases 14 and
15 can be followed through in exactly the same fashion. From 14 we find
142635, which violates the ‘opposite vertices’ constraint, and 146253, which
is just the mirror image of the labeling 135264 found earlier. From 15 we
again find two new labelings, but both are mirror images of labelings already
found.

Thus there are just two fundamentally different valid labelings: 135264
and 136425. Each has the same collection of absolute differences, namely
2,2,2,3,3,4. Hence, a randomly chosen edge will yield a 2 with probability 1

2
.

Problem 2. Let R be the operation on 2-by-2 matrices that ‘rotates’ the

entries 90◦ clockwise. That is, for A =

[
a b
c d

]
we define AR =

[
c a
d b

]
.

Find all matrices having real or complex entries and satisfying A2 = AR.

Solution I. First, we observe that detA = ad−bc, while detAR = bc−ad =
− detA, so from the fact that det(A2) = (detA)2 and the equation, we obtain
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the identity
detA · (detA+ 1) = 0.

Hence the determinant has to either be 0 or −1, therefore ad = bc or ad =
bc− 1. We will use these later.

Next, we observe that A2 = AR produces the following system of equa-
tions: 

a2 + bc = c (1)

ab+ bd = a (2)

ac+ dc = d (3)

bc+ d2 = b (4)

Subtract (4) from (1) and (3) from (2):

a2 − d2 = c− b⇒ (a− d)(a+ d) = c− b
ab+ bd− ac− cd = a− d⇒ (b− c)(a+ d) = a− d

Replacing (a− d) from the second one and plugging it into the first one we
get:

(b− c)[(a+ d)2 + 1] = 0 (I)

Now, we add (2) and (3) and get (a+ d)(b+ c) = a+ d, so:

(a+ d)(b+ c− 1) = 0 (II)

Therefore we have 4 cases: b = c, a+ d = ±i, a = −d and b+ c = 1.
Case I: b = c. Then it follows that a2 = d2, so a = d or a = −d. If

a = d, then 2ab = a, 2ac = a and a2 + b2 = b. In this case either a = 0 or
b = c = 1

2
.

When a = 0, then d = 0, so b2 = b, hence b = 0 or b = 1. We obtain two
matrices

A1 =

[
0 0
0 0

]
A2 =

[
0 1
1 0

]
.

When b = c = 1
2
, then a2 = 1

4
, so a = ±1

2
= d. This gives two more

matrices:

A3 =
1

2

[
1 1
1 1

]
A4 =

1

2

[
−1 1
1 −1

]
.

If a = −d, then from (2) it follows that a = 0, so d = 0 and in that case
b2 = b, leading to the same matrices as above, A1 and A2.
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Case II: a = −d. From (2) and (3) it follows that a = d = 0, so
bc = c = b, so again b2 = b, giving the already obtained matrices A1 and A2.

Case III: b+ c = 1. By adding (1) and (4), we obtain a2 + 2bc+ d2 = 1,
which is the same as a2 + 2ad + d2 + 2bc − 2ad = 1. If detA = −1, then
we deduce that (a + d)2 = −1, which gives the case a + d = ±i (treated
separately). If, on the other hand, detA = 0, then (a+d)2 = 1, so a+d = ±1.
The case a + d = 1 gives b = a and c = d (from (2) and (3)), and it follows
from (1) and (4) that b2 + bc = c and bc+ c2 = b and subtracting these gives
(b− c)(b+ c+ 1) = 0, so b = c or b+ c = −1. The second case is impossible,
since b+ c = 1, so we get that b = c = 1

2
and thus the matrix A3 is obtained.

Similarly, when a+ d = −1, the matrix A4 is obtained.
Case IV: a + d = ±i. We treat the case a + d = i first. From (2) and

(3), we get that ib = a and ic = d, so b = −ia and c = −id. Hence b+ c = 1.
From case III, we have that detA = −1 (the other case gave the known
matrices). Therefore we have the system

b = −ia
c = −id
a+ d = i

bc− ad = 1

It’s easy to see that this lead to the equation 2a2−2ia−1 = 0, with solution
a = 1

2
(i+ 1) or a = 1

2
(i− 1). So we obtain two matrices:

A5 =
1

2

[
i+ 1 1− i
1 + i i− 1

]
A6 =

1

2

[
i− 1 1 + i
1− i i+ 1

]
.

The case a + d = −i leads to the fact that −ib = a, −ic = d, b = ia,
c = id. Moreover, this gives the equation 2a2 + 2ia− 1 = 0, so a = 1

2
(−i+ 1)

or a = 1
2
(−i− 1), which creates two more matrices:

A7 =
1

2

[
−i+ 1 1 + i
1− i −i− 1

]
A8 =

1

2

[
−i− 1 1− i
1 + i −i+ 1

]
.

Solution II. The problem is reduced to solving the system

a2 + bc = c, ab+ bd = a, ac+ dc = d, bc+ d2 = b.
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Subtracting the last from the first and the third from the second, we get

(a− d)(a+ d) = c− b, (a+ d)(b− c) = a− d.

This suggests the change of variables

a− d = x, b− c = y, a+ d = u, b+ c = t.

In terms of the new variables, the system can be written as

xu = −y, yu = x, (t+ y)u = x+ u, t2 − y2 + (x− u)2 = 2y + 2t.

Equivalently,

xu = −y, yu = x, tu = u, (t− 1)2 + x2 + u2 = y2 + 1.

Starting with the third equation, we have

Case 1. If u = 0, we get x = y = 0 and t = 2 or t = 0.
Case 2. If t = 1, we get xu2 = −x and x2 + u2 = x2u2 + 1.
Subcase 2a. If x = 0 we get u = 1 or u = −1 and y = 0.
Subcase 2b. If u2 = −1 we get x2 = 1 and y = −ux.

Case 1 and Subcase 2a give four real-entry matrices:[
a b
c d

]
=

[
0 0
0 0

]
,

[
0 1
1 0

]
,

[
.5 .5
.5 .5

]
,

[
−.5 .5
.5 −.5

]
,

and Subcase 2b gives four complex-entry matrices:[
.5 + .5i .5− .5i
.5 + .5i −.5 + .5i

]
,

[
−.5 + .5i .5 + .5i
.5− .5i .5 + .5i

]
,[

.5− .5i .5 + .5i

.5− .5i −.5− .5i

]
,

[
−.5− .5i .5− .5i
.5 + .5i .5− .5i

]
.

Problem 3. Let y = f(x) be a function defined on [0, 1]. In each of the
following cases, find the largest real number B such that the statement∫ 1

0

(y′
2

+ y)dx ≥ B
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is true for all functions of the type specified:
(a) f is linear, with f(0) = 0.
(b) f is continuously differentiable, with f(0) = 0.

Solution I. (a) For linear functions f(x) = mx, we minimize∫ 1

0

(y′
2

+ y)dx =

∫ 1

0

(m2 +mx)dx = m2 +m/2

where m is the slope of the line. The minimum is achieved when m = −1
4
,

which gives B = −1/16.
(b) For continuosuly differentiable functions we integrate by parts∫ 1

0

ydx = xy|x=1
x=0 −

∫ 1

0

y′xdx = y(1)−
∫ 1

0

y′xdx

=

∫ 1

0

y′dx−
∫ 1

0

y′xdx =

∫ 1

0

y′(1− x)dx.

Hence, we minimize the integral∫ 1

0

(y′2 + y)dx =

∫ 1

0

[y′2 + y′(1− x)]dx.

At each x the integrand y′2 + (1 − x)y′ is a quadratic function in y′ whose
minimum is attained (by the standard formula for the vertex of a parabola)
at y′ = 1

2
(x− 1) and thus,

y′2 + (1− x)y′ ≥ −1
4
(x− 1)2.

Hence, our integral is bounded below as follows∫ 1

0

[y′2 + y′(1− x)]dx ≥ −1

4

∫ 1

0

(x− 1)2dx = −1

4

(x− 1)3

3

∣∣∣∣1
0

= − 1

12

and this bound is achieved when y′ = 1
2
(x− 1).

Solving the differential equation y′ = 1
2
(x − 1) with y(0) = 0 gives the

solution y = 1
4
(x − 1)2 − 1

4
. Therefore, the lower bound B = −1/12 of the

original integral is achieved when y = 1
4
(x− 1)2 − 1

4
.
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Solution II. (b) First we will show that the function y(x) minimizing the
integral must be strictly decreasing. Assume that y(x) is increasing on some
interval [a, b] ⊂ [0, 1]. Then clearly y(x) ≥ y(a), for any x ∈ [a, b]. Hence we
obtain that (y′(x))2 + y(x) ≥ y(a). Integrating this over [a, b] we obtain∫ b

a

(y′2 + y) dx ≥
∫ b

a

y(a) dx = y(a)(b− a). (1)

For a parameter m, define a new function, gm(x) as follows:

gm(x) =


y(x) x ≤ a

y(a)−m(x− a) a ≤ x ≤ b

y(x)− y(b) + y(a)−m(b− a) b ≤ x

.

We will show that there exists m > 0 such that
1∫

0

((g′m)2 + gm) dx ≤
1∫

0

(y′2 + y) dx.

Since (g′m)2+gm ≤ y′2+y for every x ∈ [0, a] and x ∈ [b, 1] then it is sufficient

to show that
b∫
a

((g′m)2 + gm) dx ≤
b∫
a

(y′2 + y) dx for some m. Now we have

b∫
a

((g′m)2 + gm) dx =

b∫
a

(m2 + y(a)−m(x− a)) dx

= m2(b− a)−m(b− a)2

2
+ y(a)(b− a) ≤ y(a)(b− a)

if for example m = (b− a)/4. Now our claim follows from (??).
Therefore y(x) is a strictly decreasing function on the interval [0, 1] and

thus it has an inverse function x(y). This yields

1∫
0

y(x)dx =

y(1)∫
0

[1− x(y)]dy =

1∫
0

[1− x]y′(x)dx.

Therefore
1∫

0

(y′
2

+ y)dx =

1∫
0

[y′
2

+ (1− x)y′]dx.

The solution now continues as in Solution I.
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CCSU Regional Math Competition, 2015

SOLUTIONS II

Problem 4. You come across an old-fashioned paper calendar for the month
of May and you see that someone has circled three dates, A, B, and C. You
notice that A, B and C are prime numbers and that A, B-1, and B form a
Pythagorean triple. While pondering all this, you happen to write down the
two-by-two matrix [

B A
C B − 1

]
and you notice that the determinant is 1. That is to say, you notice that
B(B− 1)−AC = 1. What is the product of the three numbers A, B and C?

Solution I. We see that C can be found from A and B using the last equa-
tion, so we focus on the possible Pythagorean triples, which can be of two
kinds: either A2 + (B − 1)2 = B2, or else (B − 1)2 + B2 = A2 . We assume
the first case, for now, which gives us A2 = 2B−1, or B = A2+1

2
. We can see

that A is an odd prime. Since B is a prime of value 31 or less, A must be a
prime whose square is 61 or less. This means that A must be 3, 5 or 7. This
gives B = 5, 13 or 25, respectively, and only the first two are prime. For
A = 3 and B = 5, we find that C = 19

3
, which is not an integer. For A = 5

and B = 13, we find that C = 31, which is a solution with ABC = 2015.

Are there any other solutions? If so, they must be ones where A2 =
B2 +(B−1)2. With B = 23 we would have A2 = 1013, which is greater than
(31)2. So we only need to check for when B is a prime less than or equal to
19. None of these are such that B2 + (B − 1)2 is the square of a prime.

Solution II. This proof is courtesy a couple of the contestants who noticed
that since the numbers A, B and C must be prime integers, it is not necessary
to assume that they are between 2 and 31 or to test the individual combi-
nations. One solution did this for both possible forms of the Pythagorean
triple, and that solution is essentially reproduced here.

Case 1: Suppose that A2 + (B − 1)2 = B2. This yields B = A2+1
2

. The

second condition is that B(B − 1) − AC = 1, so if we substitute A2+1
2

for
B and rearrange, we obtain, A(A3 − 4C) = 5. The only way for 5 to be

7



the product of two such integers with A a positive prime is if A = 5 and
A3− 4C = 1, giving us B = 13 and C = 31. From this, we have the solution
ABC = 2015.

Case 2: Now suppose that B2 + (B−1)2 = A2. This can be put in the form
A2−2B(B−1) = 1. The other condition can be written B(B−1) = 1+AC, so
substituting 1+AC for B(B−1), we obtain A2−2AC = 3, or A(A−2C) = 3.
The only way this can happen is if A = 3 and A − 2C = 1. But then we
must also have C = 1, which is not a prime number. (Even if we allow C =
1, there is not even any integer B for which B(B − 1) = AC + 1 = 4.)

Problem 5. Consider two externally tangent circular discs of radius 1 in
the plane. Suppose E is an ellipse that completely encloses the discs and has
its major axis on the line joining their centers. What is the smallest possible
area of E?

Solution I. Suppose the discs are centered on the x-axis, with their point
of tangency at the origin. The boundary of the disc on the right is the circle
(x−1)2 +y2 = 1. (It should be clear that the ellipse is centered at the origin;
otherwise, there would be extra space at the left or the right. Then we could
slide the discs a bit in that direction, and shrink the ellipse.) The generic

equation of such an ellipse is x2

a2
+ y2

b2
= 1, with a ≥ 2 and b > 1. To find the

x-coordinate of the intersection of the ellipse and the circle, we eliminate y2

by a substitution, obtaining (a2 − b2)x2 − 2a2x+ a2b2 = 0, which gives

x =
2a2 ±

√
4a4 − 4a2b2(a2 − b2)
2(a2 − b2)

.

The ellipse will be tangent to the circle precisely when x is a double root—in
other words, when the discriminant 4a4 − 4a2b2(a2 − b2) is zero. This leads
to the equation a2 = b4

b2−1 .
The area of the ellipse is given by A = πab. Minimizing A2 is a bit easier

than minimizing A, so we work with A2 = π2a2b2 and by substitution we
obtain

A2 =
π2b6

b2 − 1
.

Proceeding as usual with d
db

(A2), we find that the minimum occurs at critical

point b =
√
6
2

, corresponding to A2 = 27π2

4
, so the minimum area is A = 3

√
3π
2

.
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Solution II. The ellipse Ax2 +By2 = 1, A > 0, B > 0 centered at the origin
encloses the circles (x± 1)2 + y2 = 1 or x2 + y2 = 2|x| if and only if

(A−B)x2 + 2Bx ≤ 1 for all 0 ≤ x ≤ 2.

In order to maximize the left hand side, the critical point is x = B/(B−A)
if B 6= A and this point is between 0 and 2 if and only if 2A < B.

Case 1. If A = B, then the constraint is B ≤ 1/4.
Case 2. If 2A < B, then the constraint is B2 ≤ B−A and A ≤ 1/4 since

the value at the critical point is

− B2

B − A
+

2B2

B − A
=

B2

B − A
.

Case 3. If 2A ≥ B, then the constraint is A ≤ 1/4 (the value at the
endpoint x = 2).

The problem asks to minimize the area π/
√
AB or equivalently to maxi-

mize the product AB subject to the constraints above. In cases 1 and 3 the
maximum is AB = 1/16 or AB = 1/8. In case 2, we need to maximize AB
on the region:

0 < B < 2A, B2 ≤ B − A.

Notice that the curves B = 2A and B2 = B − A meet at the boundary
point (A,B) = (1/4, 1/2), so that in this region we have A ≤ 1/4. A simple
variational argument shows that the maximum of AB must occur on the
boundary A = B − B2 for 0 < B ≤ 1/2. Equivalently, we maximize the
function AB = B2 −B3 on the interval (0, 1/2] and the maximum occurs at
B = 2/3. So that, the (absolute) minimum area is π/

√
AB = 3

√
3π/2.

Problem 6. Let f : R → R be a continuous function, such that for any
x ∈ R and for any n ∈ N,

f(x) ≤ f

(
x+

1

n

)
.

Show that f is increasing.
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Solution I. We must show that f(x) ≤ f(y) holds whenever x < y. As a
tool, we’ll use a wonderful fact about the sequence { 1

n
} = 1, 1

2
, 1
3
, . . . . Since

Σ 1
n
→ ∞, while 1

n
→ 0, it follows by an easy exercise that for any k > 0

there is a subsequence whose sum converges to k.
Now for any x and y satisfying x < y, we set k = y − x. Let {xn} be the

subsequence mentioned above, whose sum converges to k. By the original
given inequality, the sequence

f(x), f(x+ x1), f(x+ x1 + x2), . . .

is increasing. The terms of this sequence have arguments converging to x+k,
which is y. Hence, by the continuity of f , the sequence converges to f(y).
Since the limit of an increasing sequence cannot be smaller than any single
term, we have f(x) ≤ f(y).

Solution II. It’s clear that applying the inequality m times, one gets that

f(x) ≤ f
(
x+

m

n

)
for any m,n ∈ N. Let x < y. Denote z = y − x > 0. Any real number can
be written as a limit of a sequence of rational numbers. In this case, since
z > 0, let’s write it as a limit of an increasing sequence of positive rational
numbers. So z = lim

n→∞
zn, where zn = pn

qn
for some pn, qn ∈ N. Moreover,

f(x) ≤ f(x + zn) for every n > 0. But lim
n→∞

(x + zn) = x + z = y, so that

lim
n→∞

f(x + zn) = f(y) because f is continuous. Since f(x) ≤ f(x + zn) for

every n > 0, when we take the limit we get lim
n→∞

f(x) ≤ lim
n→∞

f(x + zn) and

therefore f(x) ≤ f(y).

Solution III. (Proof by contradiction.) Suppose that the conclusion is false.
Then there are x1 < x2 such that f(x1) > f(x2). Choose an ε such that
0 < ε < x2 − x1, and choose a positive integer n such that 1

n
< ε. Now

let m be the smallest integer such that x1 + m
n
> x2 − ε. Then, clearly,

x2 − ε < x1 + m
n
< x2. Now, applying the hypothesis m times, we have

f(x2) < f(x1) ≤ f
(
x1 +

m

n

)
.

But this contradicts the continuity of f(x) at the point x2 since x1 + m
n

is
within ε of x2 and ε could be chosen arbitrarily small.
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