CCSU Regional Math Competition, 2013

SOLUTIONS

1. What is the average (arithmetic mean) of the following numbers?

$$
2013,2012,2012,2011,2011,2011,2010,2010,2010,2010, \ldots, \underbrace{1,1,1, \ldots, 1}_{2013 \text { terms }}
$$

Solution 1: Let n be a positive integer. Consider the sequence

$$
n, n-1, n-1, n-2, n-2, n-2, \ldots, \underbrace{1,1,1, \ldots, 1}_{n \text { terms }}
$$

and denote the average value of the numbers in that sequence by $A(n)$.
We notice first that the number of the elements in our sequence is

$$
1+2+\cdots+n=\frac{n(n+1)}{2} .
$$

If $n=1$ then $A(1)=1$; if $n=2$ then $A(2)=\frac{4}{3}$; if $n=3$ then $A(3)=$ $\frac{10}{6}=\frac{5}{3}$; if $n=4$ then $A(4)=\frac{20}{10}=\frac{6}{3}$; if $n=5$ then $A(5)=\frac{35}{15}=\frac{7}{3}$. Based on these observations we make the induction hypothesis that $A(n)=\frac{n+2}{3}$ for every positive integer n.

Our hypothesis is clearly true for $n=1$. Let us suppose that $A(n)=\frac{n+2}{3}$ for some integer $n \geq 1$. We will prove that $A(n+1)=\frac{n+3}{3}$.

Let us compare the following two sequences

$$
n, n-1, n-1, n-2, n-2, n-2, \ldots, \underbrace{1,1,1, \ldots, 1}_{n \text { terms }}
$$

and

$$
n+1, n, n, n-1, n-1, n-1, \ldots, \underbrace{1,1,1, \ldots, 1}_{n+1 \text { terms }} .
$$

Since the first sequence has average $A(n)=\frac{n+2}{3}$ and $\frac{n(n+1)}{2}$ elements, the total sum of its elements is

$$
\frac{n(n+1)}{2} \cdot \frac{n+2}{3}=\frac{n(n+1)(n+2)}{6} .
$$

It is clear that the second sequence has one more 1 , one more 2 , and so on, one more $n+1$ number than the first sequence. Therefore the total sum of the elements of the second sequence is

$$
\frac{n(n+1)(n+2)}{6}+\frac{(n+1)(n+2)}{2}=\frac{(n+1)(n+2)(n+3)}{6} .
$$

Since the second sequence has $\frac{(n+1)(n+2)}{2}$ elements, the average value of its elements will be

$$
\frac{(n+1)(n+2)(n+3)}{6} \div \frac{(n+1)(n+2)}{2}=\frac{n+3}{3} .
$$

Therefore, according to the Principle of Mathematical Induction our claim is true for every positive integer n.

Therefore if $n=2013, A(2013)=\frac{2015}{3}$ which is the answer to our question.
Solution 2: The average is given by the following formula for $n=2014$:

$$
\begin{aligned}
\frac{\sum_{i=1}^{n-1}(n-i) \cdot i}{\sum_{i=1}^{n-1} i}= & n-\frac{\sum_{i=1}^{n-1} i^{2}}{\sum_{i=1}^{n-1} i}=n-\frac{(n-1) n(2 n-1)}{6} \cdot \frac{2}{(n-1) n} \\
& =n-\frac{2 n-1}{3}=\frac{n+1}{3}=\frac{2015}{3} .
\end{aligned}
$$

2. Let a and b be real numbers such that $a<b$. Evaluate

$$
\int_{a}^{b} \sqrt{(x-a)(b-x)} d x
$$

Solution 1: We draw a circle with center the point $\frac{b+a}{2}$ and radius $\frac{b-a}{2}$. Let $c=(x, h)$ be any point from that circle. Using
 similar triangles one can verify that

$$
h^{2}=(x-a)(b-x)
$$

for every $x \in[a, b]$. Therefore

$$
\int_{a}^{b} \sqrt{(x-a)(b-x)} d x=\int_{a}^{b} h(x) d x
$$

which is the area of the upper half circle. Thus,

$$
\int_{a}^{b} \sqrt{(x-a)(b-x)} d x=\frac{\pi}{2}\left(\frac{b-a}{2}\right)^{2}=\frac{\pi(b-a)^{2}}{8}
$$

Solution 2: First we represent $(x-a)(b-x)$ as a difference of two perfect squares:

$$
(x-a)(b-x)=\left(\frac{a-b}{2}\right)^{2}-\left(x-\frac{a+b}{2}\right)^{2}
$$

and thus

$$
\int_{a}^{b} \sqrt{(x-a)(b-x)} d x=\int_{a}^{b} \sqrt{\left(\frac{a-b}{2}\right)^{2}-\left(x-\frac{a+b}{2}\right)^{2}} d x
$$

Then using the substitutions $p=\frac{b-a}{2}$ and $u=x-\frac{a+b}{2}$ we obtain

$$
\int_{a}^{b} \sqrt{(x-a)(b-x)} d x=\int_{-p}^{p} \sqrt{p^{2}-u^{2}} d u .
$$

Finally, using the substitution $u=p \sin \theta$, hence $d u=p \cos \theta d \theta$, we get consecutively

$$
\begin{gathered}
\int_{-p}^{p} \sqrt{p^{2}-u^{2}} d u=\int_{-\pi / 2}^{\pi / 2} p \cos \theta \cdot p \cos \theta d \theta=p^{2} \int_{-\pi / 2}^{\pi / 2} \frac{1+\cos 2 \theta}{2} d \theta \\
=p^{2} \int_{-\pi / 2}^{\pi / 2} \frac{1}{2} d \theta+\frac{p^{2}}{4} \int_{-\pi / 2}^{\pi / 2} \cos 2 \theta d 2 \theta=\frac{\pi p^{2}}{2}=\frac{\pi(b-a)^{2}}{8}
\end{gathered}
$$

3. An open-topped box is constructed from a rectangular sheet R by cutting out a square of side x from each corner and then folding up the four flaps. A calculus student is required to find the value of x for which the volume is maximized. Given that $x=3$ is the correct answer, and that R has integral length and width, find the largest possible perimeter of R.

Solution: Let R have size a by b where $a \leq b$. Then the volume of the constructed open-top box is

$$
V(x)=x(a-2 x)(b-2 x)=4 x^{3}-2(a+b) x^{2}+a b x,
$$

where $V(x)$ is defined for all positive x such that $x<\frac{a}{2}$. Then $V^{\prime}(x)=$ $12 x^{2}-4(a+b) x+a b$. Since $V(x)$ has a local maximum at $x=3, V^{\prime}(3)=0$. Hence $108-12(a+b)+a b=0$, or $(a-12)(b-12)=36$. 36 up to symmetry could be written as a product of two integers as follows:

$$
36=1 \times 36=2 \times 18=3 \times 12=4 \times 9=6 \times 6 .
$$

In these cases (a, b) will be equal respectively to

$$
(13,48),(14,30),(15,24),(16,21),(18,18) .
$$

Clearly R will have the largest perimeter $P=122$ when $a=13$ and $b=48$. One can verify directly that $V(x)$ actually has a global maximum at $x=3$ when $a=13$ and $b=48$.
4. There are 43 students in a classroom. Each one speaks French or German or Spanish. Each language is spoken by exactly 20 students. Exactly 11 students speak exactly two of these languages. Exactly 5 students speak both German and Spanish. Exactly 33 students speak German or French (or both). What is the probability that 2 students, selected randomly, speak a total of at least 2 of the 3 languages.

Solution: We prepare a Venn diagram as in Figure 2 where with F, G and S are denoted the number of students who speak respectively French, German and Spanish. Then using the text of the problem and the notation introduced on Figure 2 we obtain the following seven equations:

$$
\begin{gathered}
a+b+c+x+y+z+t=43 \\
a+x+y+t=b+y+z+t=c+x+z+t=20 \\
x+y+z=11, \quad z+t=5 \\
a+b+x+y+z+t=33
\end{gathered}
$$

From the first and the seventh equations we get that $c=10$ and using the sixth equation we obtain from the fourth equation that $x=5$. Using the sixth equation again we obtain from the third that $b+y=15$. Now from the seventh equation we obtain that $a=8$. Then from the second equation we have $y+t=7$ and from the fifth we have $y+z=6$. Adding these two equations and $z+t=5$ we get $2(y+z+t)=18$, or $y+z+t=9$. Therefore $t=3, y=4$ and $z=2$; hence $b=11$. The results are on Figure 3 .

To find the required probability it is sufficient to find the probability of the complementary event: both students to speak only one language which is the same for both of them. This probability is equal to $\frac{8 \cdot 7+11 \cdot 10+10 \cdot 9}{43 \cdot 42}=\frac{256}{1806}=\frac{128}{903}$. Therefore the answer to our question is $1-\frac{128}{903}=\frac{775}{903}$.
5. Does there exist a polynomial function $f(x)$ of degree 4 such that the graph of $f^{\prime \prime \prime}$ is tangent to the graph of f at two places?

Solution: Let $f(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$. Then $f^{\prime}(x)=4 a x^{3}+$ $3 b x^{2}+2 c x+d ; f^{\prime \prime}(x)=12 a x^{2}+6 b x+2 c$; and $f^{\prime \prime \prime}(x)=24 a x+6 b$. If $f^{\prime \prime \prime}(x)$ is tangent to $f(x)$ at two places then the function

$$
g(x)=f(x)-f^{\prime \prime \prime}(x)=a x^{4}+b x^{3}+c x^{2}+(d-24 a) x+(e-6 b)
$$

must have exactly two double real roots x_{1} and x_{2}. Therefore

$$
g(x)=a\left(x-x_{1}\right)^{2}\left(x-x_{2}\right)^{2} .
$$

If we substitute $a=1, x_{1}=0$ and $x_{2}=1$ we have $g(x)=x^{4}-2 x^{3}+x^{2}$ and thus, $b=-2, c=1, d-24=0$ and $e-6(-2)=0$. Hence $d=24$ and $e=-12$. Therefore in that case $f(x)=x^{4}-2 x^{3}+x^{2}+24 x-12$ and one can check directly that $f^{\prime \prime \prime}(x)$ is tangent to $f(x)$ exactly at $x=0$ and $x=1$. In fact every choice of $a \neq 0$ and $x_{1} \neq x_{2}$ will produce one such polynomial. Therefore the answer of the given question is affirmative.
6. In number theory it is known that for each prime number p and each integer a there is an integer b such that $a^{p}-a=p b$. Prove or disprove that for each prime number p and each 2×2-matrix with integer entries of the form

$$
A=\left[\begin{array}{ll}
a & c \\
c & a
\end{array}\right]
$$

there is an integer d such that

$$
\operatorname{tr}\left(A^{p}-A\right)=p \cdot d
$$

where $\operatorname{tr}(M)$ denotes the sum of the diagonal entries of the matrix M.
Solution 1: We prove that the statement is true. We claim that for any positive integer k

$$
A^{k}=\left[\begin{array}{ll}
B & D \\
D & B
\end{array}\right]
$$

where B is the sum of all the terms in the binomial expansion of $(a+c)^{k}$ with even powers of c and D is the sum of the remaining terms in the binomial expansion of $(a+c)^{k}$. Given that this is the case, we note that

$$
\begin{aligned}
\operatorname{tr}\left(A^{p}-A\right) & =2 B-2 a=(B+D-a-c)+(B-D-a+c) \\
& =(a+c)^{p}-(a+c)+(a-c)^{p}-(a-c)=\left(b_{1}+b_{2}\right) p
\end{aligned}
$$

by applying the theorem stated in the problem twice.
In order to prove our claim for the form of A^{k} we use induction. It is clearly true for $k=1$, so assume it is true for an arbitrary k. Then

$$
A^{k+1}=\left[\begin{array}{cc}
a & c \\
c & a
\end{array}\right] \times\left[\begin{array}{ll}
B & D \\
D & B
\end{array}\right]=\left[\begin{array}{ll}
a B+c D & a D+c B \\
a D+c B & a B+c D
\end{array}\right] .
$$

Our claim follows.
Solution 2: We prove that the statement is true. Indeed, the following conjugate of the matrix A is an upper triangular matrix with integer entries

$$
S=\left[\begin{array}{cc}
1 & 0 \\
-1 & 0
\end{array}\right], \quad S A S^{-1}=\left[\begin{array}{cc}
a+c & c \\
0 & a-c
\end{array}\right]=\left[\begin{array}{cc}
a_{1} & * \\
0 & a_{2}
\end{array}\right] .
$$

Hence, by an inductive calculation we have

$$
S A^{p} S^{-1}=\left[\begin{array}{cc}
a_{1}^{p} & * \\
0 & a_{2}^{p}
\end{array}\right] .
$$

Moreover, the sum of the diagonal entries is invariant under conjugation:

$$
M=\left[\begin{array}{cc}
m & n \\
r & s
\end{array}\right], \quad S M S^{-1}=\left[\begin{array}{cc}
m+n & * \\
* & s-n
\end{array}\right], \quad \operatorname{tr}\left(S M S^{-1}\right)=\operatorname{tr}(M) .
$$

The statement now follows from the number theoretical fact mentioned in the problem since

$$
\operatorname{tr}\left(A^{p}-A\right)=\operatorname{tr}\left(S A^{p} S^{-1}-S A S^{-1}\right)=a_{1}^{p}-a_{1}+a_{2}^{p}-a_{2} .
$$

