
CCSU Regional Math Competition, 2012

Part I

Each problem is worth ten points. Please be sure to use separate pages to
write your solution for every problem.

1. Find all real numbers r, with r ≥ 1, such that a 1-by-r rectangle R
can be cut apart into exactly 3 rectangular pieces, each similar to R.

2. Suppose 4 containers are watched by 4 people as follows: Ann sees
containers 1 and 2; Ben sees containers 2 and 3; Cy sees containers 3 and 4;
and Dee sees containers 4 and 1. Three balls are tossed into the containers,
each ball landing in any of the 4 containers with equal probability. What is
the probability that one person sees all 3 balls?

3. For each positive integer n ≥ 2, define f(n) to be the smallest prime
factor of n(n + 1) − 1. For how many values of n not exceeding 2012 does
f(n) = 11?
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CCSU Regional Math Competition, 2012

Part II

Each problem is worth ten points. Please be sure to use separate pages to
write your solution for every problem.

4. Take the triangle formed by the centers of the faces that meet at one
vertex of a cube and the triangle formed by the centers of the 3 edges meeting
at the same vertex. Show that these two triangles are congruent and that
one is twice as far from the center of the cube as the other one.

5. Show that

π − 2√
2
≤
∫ π

2

0

x2 sinx√
1 + sin x

dx ≤ π − 2.

6. Let α and β be positive irrational numbers related by the equation
1

α
+

1

β
= 1. Let M be the set of positive integers j such that there exists a

positive integer r with j < rα < j+ 1. Similarly, let N be the set of positive
integers k such that there exists a positive integer s with k < sβ < k + 1.
Show that M ∩N = ∅ and that M ∪N = N, the set of all positive integers.
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CCSU Regional Math Competition, 2012

SOLUTIONS

1. Find all real numbers r, with r ≥ 1, such that a 1-by-r rectangle R
can be cut apart into exactly 3 rectangular pieces, each similar to R.

Solution: We will call a cut of the given rectangle vertical if we cut R
perpendicularly to the sides equal to r and horizontal if the cut is parallel to
the sides with length r.

If we cut R horizontally using a full cut, we will obtain two rectangles.
Since we need three we can cut only one of these rectangles. Then one of
the three rectangles must have dimensions x× r, where x < 1 ≤ r. In order
for this rectangle to be similar to R we must have x/r = 1/r, hence x = 1, a
contradiction. Therefore when we cut R we cannot use full horizontal cuts.

Therefore we must use at least one full vertical cut. Then as above we
notice that one of the three rectangles must have dimensions 1 × x. The
only way for this rectangle to be similar to R is if 1/x = r/1 or x = 1/r.
Hence x ≤ 1. If we want to obtain the other two rectangles by using another
vertical cut then we will end up with two rectangles with sides 1×y and 1×z.
Either y ≤ 1 or y ≥ 1. In the first case we have 1/x = 1/y, hence x = y. In
the second case we have 1/x = y/1 and since 1/x = r we have r = y, which
is impossible. (For z we have the same possibilities as for y.) Therefore the
only such cutting that will produce the required three rectangles is when
x = y = z. Then we will have three congruent rectangles with sides 1 × x.
Then 3× x = r and since x = 1/r we have r2 = 3 or r =

√
3.

If we want to obtain the other two rectangles using horizontal cut then
we will obtain two rectangles with dimensions y × (r − x) and z × (r − x),
where y + z = 1. If y = z then y = z = 1/2. If r − x ≤ 1/2 then we
must have 1/x = (1/2)/(r − x) or 2r = 3x and since x = 1/r, r2 = 3/2.
Therefore r =

√
3/2. If r− x ≥ 1/2 then we must have 1/x = (r− x)/(1/2)

or 1 = 2x(r − x) and since x = 1/r we have r2 = 2 or r =
√

2.
Now, let y < z (the case y > z will produce the same rectangles). Then

we must have y < r − x < z and y/(r − x) = (r − x)/z or yz = (r − x)2.
Also we must have 1/x = (r − x)/y or y = x(r − x) and thus y = 1− 1/r2.
Therefore z = 1/r2. At the same time 1/x = z/(r − x) or z = (r − x)/x,
hence z = r2−1. Therefore 1/r2 = r2−1 or r4− r2−1 = 0. If we substitute
t = r2 we obtain t2− t−1 = 0 with the only positive solution t = (1+

√
5)/2.

Therefore in this case r =
√

(1 +
√

5)/2. To check that this is a solution
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we have to verify that yz = (r − x)2 or (1 − 1/r2)(1/r2) = (r − 1/r)2 or
1/r2 − 1/r4 = r2 − 2 + 1/r2. Hence r6 − 2r4 + 1 = 0. Since r2 = t we have
to verify that t3 − 2t+ 1 = 0 and since t2 − t− 1 = 0 we have t3 − t2 − t = 0
or t3 = t2 + t. Therefore we have to check that t2 + t − 2t2 + 1 = 0 or that
−t2 + t+ 1 = 0, which is clearly true.

Therefore the answer to our question is r could be only
√

3,
√

2,
√

3/2,

or
√

(1 +
√

5)/2.

2. Suppose 4 containers are watched by 4 people as follows: Ann sees
containers 1 and 2; Ben sees containers 2 and 3; Cy sees containers 3 and 4;
and Dee sees containers 4 and 1. Three balls are tossed into the containers,
each ball landing in any of the 4 containers with equal probability. What is
the probability that one person sees all 3 balls?

Solution 1: The first ball could land in any container, thus the proba-
bility of that event is 1. Then if we want the first and the second balls to
land in containers that are watched by the same person, the second ball must
land in the same container or in one of the two containers next to it. (a) The
probability the second ball to land in the same container as the first ball is
1/4. (b) The probability the second ball to land in one of the two containers
next to it is 2/4 = 1/2. Finally if we want all three balls to land in containers
watched by the same person then in case (a) the third ball must land in the
same container or in one of the two containers next to it. The probability
of that event is 3/4 and therefore the probability all these three events to
happen is (1) · (1/4) · (3/4) = 3/16. In case (b) the third ball must land
in one of the same two containers where the previous two balls had landed.
The probability of that event is 1/2 and therefore the probability all these
three events to happen is (1) · (1/2) · (1/2) = 1/4. Therefore the answer of
the question is 3/16 + 1/4 = 7/16.

Solution 2: Let A be the event that Ann sees all 3 balls and similarly
define the events B, C and D. At most two people will see all 3 balls and
those two must be side-by-side. This means that the the probability that
someone sees all 3 balls is the sum of the probabilities of A, B, C and D
minus the sum of the probabilities of A∩B, B ∩C, C ∩D and D∩A. Since
the first four probabilities are equal as well as the last four, the probability
we seek is 4 (P (A)− P (A ∩B)) in standard notation. For the event A there
are 3 ways to obtain 2 balls in cup 1 with 1 ball in cup 2 and likewise 3
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ways to obtain 1 ball in cup 1 with 2 balls in cup 2. There is just 1 way for
all 3 balls to land in cup 1, and likewise for cup 2. This gives us a total of
8 ways for Ann to see all 3 balls. On the other hand, there is only 1 way
for both Ann and Ben to see all 3 balls. The total number of equally likely
events is 4 × 4 × 4 = 64, so the probability of someone seeing all 3 balls is

4

(
8

64
− 1

64

)
=

7

16
.

3. For each positive integer n ≥ 2, define f(n) to be the smallest prime
factor of n(n + 1) − 1. For how many values of n not exceeding 2012 does
f(n) = 11?

Solution: We want to count all numbers of the form n(n+ 1)−1 = 11m
where m is not divisible by 2, 3, 5, or 7. Clearly m is not divisible by 2
since m must be odd. Similarly, by testing the equation n(n + 1) − 1 ≡ 0
modulo 3, 5 and 7, we find that the only possible solutions are when n ≡ 2
mod 5. On the other hand, we find that n(n+ 1)− 1 ≡ 0 mod 11 whenever
n ≡ 3 mod 11 or when n ≡ 7 mod 11. This means we are counting all
positive integers n ≤ 2012 of the form n = 11a+ 3 or n = 11a+ 7 such that
n 6= 5b + 2. We find that for 0 ≤ a ≤ 182 both forms of n are in range,
which gives us 2(183) = 366 candidates. It remains to subtract those of the
form n = 5b+ 2. If n = 11a+ 3 = 5b+ 2 for a, b ≥ 0 then 11a = 5b− 1 and
11(a+ 1) = 5(b+ 2). We set 11(a+ 1) = 5(b+ 2) = 55(r+ 1) so that a, b ≥ 0
whenever r ≥ 0. Then n = 5b + 2 coincides with n = 11a + 3 whenever
n = 55(r+ 1)−11 + 3 = 55r+ 47 ≤ 2012. This happens for 0 ≤ r ≤ 35 or 36
times. Similarly, when n = 11a+7 = 5b+2, we find that 11a = 5(b−1) = 55r
for some r ≥ 0. This happens for n = 55r+7 and 0 ≤ r ≤ 36 for a count of 37.
We conclude that there are 366−36−37 = 293 numbers for which f(n) = 11.
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4. Take the triangle formed by the centers of the faces that meet at one
vertex of a cube and the triangle formed by the centers of the 3 edges meeting
at the same vertex. Show that these two triangles are congruent and that
one is twice as far from the center of the cube as the other one.

Solution: Denote the cube by ABCDA′B′C ′D′ and let us denote the
midpoints of the edges AA′, AB, and AD by M , N and P , and by R, S,
and T the centers of the squares ABB′A′, ABCD, and ADD′A′, respectively.
∆ANM and ∆ABA′ are similar. Hence 2MN = BA′. Similarly 2PN = DB
and 2MP = A′D. Since BA′ = DB = A′D we conclude that ∆MNP is
equilateral triangle with sides equal 1/2 of the diagonals of sides of the cube.
∆A′TR and ∆A′DB are similar. Hence 2TR = DB. Similarly 2RS = A′D
and 2ST = BA′. Since BA′ = DB = A′D we conclude that ∆RST is
equilateral triangle with sides equal 1/2 of the diagonals of sides of the cube.
Therefore ∆MNP and ∆RST are congruent.

Let O be the center of the cube. Then OR = AP and OR||AP ; OS = AM
and OS||AM ; and OT = AN and OT ||AN . Therefore the two pyramids
AMNP and ORST are congruent. hence, the distance from O to the plane
RST is equal to the distance from A to the plane MNP . But the plane
RST is the same as the plane A′BD and therefore the distance from A to
the plane MNP is the same as the distance between the planes MNP and
RST . Therefore ∆MNP is twice as far from O as ∆RST .

5. Show that

π − 2√
2
≤
∫ π

2

0

x2 sinx√
1 + sin x

dx ≤ π − 2.

Solution: If x ∈ [0, π
2
] then 0 ≤ sinx ≤ 1, hence 1 ≤

√
1 + sin x ≤

√
2.

Therefore ∫ π
2

0

x2 sinx√
2

dx ≤
∫ π

2

0

x2 sinx√
1 + sin x

dx ≤
∫ π

2

0

x2 sinxdx.

Also, ∫
x2 sinxdx = −

∫
x2d cosx = −x2 cosx+

∫
2x cosxdx

= −x2 cosx+

∫
2xd sinx = −x2 cosx+ 2x sinx−

∫
2 sinxdx
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= −x2 cosx+ 2x sinx+ 2 cosx.

Thus ∫ π
2

0

x2 sinxdx = (−x2 cosx+ 2x sinx+ 2 cosx)

∣∣∣∣∣
π
2

0

= π − 2.

Therefore
π − 2√

2
≤
∫ π

2

0

x2 sinx√
1 + sin x

dx ≤ π − 2.

6. Let α and β be positive irrational numbers related by the equation
1

α
+

1

β
= 1. Let M be the set of positive integers j such that there exists a

positive integer r with j < rα < j+ 1. Similarly, let N be the set of positive
integers k such that there exists a positive integer s with k < sβ < k + 1.
Show that M ∩N = ∅ and that M ∪N = N, the set of all positive integers.

Solution: Suppose that M ∩N 6= ∅. Then there exist positive integers r,
s and k such that k < rα < k+1 and k < sβ < k+1. Taking the reciprocals
and multiplying through by r or by s, we obtain

r

k + 1
<

1

α
<
r

k
and

s

k + 1
<

1

β
<
s

k
.

Now adding the two sets of inequalities gives us

r + s

k + 1
< 1 <

r + s

k
.

This says that r + s must lie between k and k + 1, which is impossible, so
M ∩N = ∅.

Now suppose that there is some positive integer k such that no integer
multiple of either α or β lies between k and k + 1. Then there are positive
integers r and s such that rα < k, (r+1)α > k+1, sβ < k and (s+1)β > k+1.
The first and third inequalities can be re-written as

1

α
>
r

k
and

1

β
>
s

k

Adding the two inequalities tells us that r + s < k. By similarly combining
the remaining two inequalities we find that r+ s+ 2 > k+ 1. Again, we have
a contradiction, so M ∪N = N.
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