CCSU Regional Math Competition, 2017

Part I

Each problem is worth ten points. Please be sure to use separate pages to write your solution for every problem.

Problem 1. Suppose the graph of a quadratic function is concave down and passes through the points $(-1,1)$ and $(1,1)$. Find the smallest possible area of the region bounded by the graph and the x-axis.

Problem 2. Solve for the angles A, B, C of a triangle if

$$
\cos A+\cos B+\cos C=\frac{3}{2} .
$$

Problem 3. For each positive integer n consider the integral

$$
I_{n}=\int_{0}^{1} \frac{d x}{1+x^{1 / n}}
$$

Prove the following three statements:
a) For each n there exists a unique constant $0<c_{n}<1$ such that

$$
1+c_{n}^{1 / n}=1 / I_{n} .
$$

b) The sequence I_{n} converges to $1 / 2$.
c) The sequence c_{n} converges to $1 / e$ where e is the Euler number.

CCSU Regional Math Competition, 2017

Part II

Each problem is worth ten points. Please be sure to use separate pages to write your solution for every problem.

Problem 4. Suppose r is a positive real number. Consider the family of circles C_{i} in the plane, where C_{0} has radius 1 and center $(1,1)$ and for each integer $i \geq 1$, the circle C_{i} has radius r^{i}, lies in the first quadrant on the right side of C_{i-1}, is externally tangent to C_{i-1}, and is tangent to the x-axis. Let x_{i} be the x-coordinate of the center of C_{i}. Find r such that the sequence x_{i} converges to $7 / 3$.

Problem 5. Find all triples (x, y, z) of positive real numbers such that

$$
x+\frac{2}{y}=3 y \quad y+\frac{2}{z}=3 z, \quad z+\frac{2}{x}=3 x .
$$

Problem 6. For each positive integer n, let K_{n} be the graph on n vertices such that every two vertices are connected by an edge which is colored either red or blue. Show that K_{n} must contain
a) at least two monochromatic triangles if $n=6$;
b) at least four monochromatic triangles if $n=7$.

You may assume part a) in part b).

