CCSU Regional Math Competition, 2018

SOLUTIONS I

Problem 1. Let S be the square in a rectangular coordinate plane with vertices $(0,0),(0,1),(1,0)$ and $(1,1)$. Find a point P inside S such that the vertical line through P and the horizontal line through P split S into four regions whose areas form a (finite) geometric sequence with common ratio π.

Solution. If the coordinates of the point that we are trying to find are (x, y) with $0<x<y<\frac{1}{2}$ then the areas of the four rectangles will be $x y, x(1-y)$, $y(1-x),(1-x)(1-y)$ (in increasing order). From $\frac{x(1-y)}{x y}=\frac{1-y}{y}=\pi$ we get $y=\frac{1}{\pi+1}$. From $\frac{y(1-x)}{x(1-y)}=\pi$ we get $\frac{1-x}{x \pi}=\pi$, hence $x=\frac{1}{\pi^{2}+1}$. Now we verify the final ratio: $\frac{(1-x)(1-y)}{y(1-x)}=\frac{1-y}{y}=\pi$. Notice that $\frac{1}{\pi^{2}+1}<\frac{1}{\pi+1}<\frac{1}{2}$.

Problem 2. Consider a 2×2 matrix A with real entries, whose determinant is $\operatorname{det} A=2$ and whose trace is $\operatorname{tr} A=2$. Show that

$$
\operatorname{det}\left(A^{2}+x A+I\right) \geq \frac{1}{2}
$$

for all real numbers x, where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and for a matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ the trace $\operatorname{tr} A=a+d$ and $\operatorname{det} A=a d-b c$.

Solution 1. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $\operatorname{det} A=a d-b c=2$ and $\operatorname{tr} A=a+d=2$. Then

$$
\begin{aligned}
A^{2}+x A+I & =\left(\begin{array}{cc}
a^{2}+b c & a b+b d \\
a c+d c & b c+d^{2}
\end{array}\right)+x\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
a^{2}+b c+x a+1 & a b+b d+x b \\
a c+d c+c x & b c+d^{2}+x d+1
\end{array}\right) \\
& =\left(\begin{array}{cc}
a(a+x)+b c+1 & b(a+d+x) \\
c(a+d+x) & d(d+x)+b c+1
\end{array}\right)
\end{aligned}
$$

Therefore $\operatorname{det}\left(A^{2}+x A+I\right)=$

$$
\begin{aligned}
& =[a(a+x)+b c+1][d(d+x)+b c+1]-b c(a+d+x)^{2} \\
& =a d(a+x)(d+x)+(b c+1)\left(a^{2}+d^{2}+a x+d x\right)+(b c+1)^{2}-b c(a+d+x)^{2} \\
& =a d(a+x)(d+x)+b c\left(a^{2}+d^{2}+a x+d x-a^{2}-d^{2}-x^{2}-2 a d-2 a x-2 d x\right) \\
& +a^{2}+d^{2}+a x+d x+(b c)^{2}+2 b c+1 \\
& =a d(a+x)(d+x)-b c(a+x)(d+x)-b c \cdot a d+a^{2}+d^{2}+a x+d x+(b c)^{2}+2 b c+1 \\
& =(a d-b c)(a+x)(d+x)-b c(a d-b c)+a^{2}+d^{2}+a x+d x+2 b c+1 \\
& =2(a+x)(d+x)-2 b c+a^{2}+d^{2}+a x+d x+2 b c+1 \\
& =2(a+x)(d+x)+a^{2}+d^{2}+a x+d x+1 \\
& =2 a d+2 a x+2 d x+2 x^{2}+a^{2}+d^{2}+a x+d x+1 \\
& =(a+d)^{2}+3(a+d) x+2 x^{2}+1 \\
& =1+2 x^{2}+6 x+4 \\
& =2 x^{2}+6 x+5 .
\end{aligned}
$$

The function $f(x)=2 x^{2}+6 x+5$ has a minimum of $\frac{1}{2}$, at $x=-\frac{3}{2}$ (solve the equation $\left.f^{\prime}(x)=0\right)$.

Therefore

$$
\operatorname{det}\left(A^{2}+x A+I\right)=2 x^{2}+6 x+5 \geq \frac{1}{2} .
$$

Solution 2 Consider the polynomial $p(t)=t^{2}+x t+1$, which has two roots t_{1}, t_{2}, having the property that $t_{1}+t_{2}=-x$ and $t_{1} t_{2}=1$. Then the polynomial can be written as $p(t)=\left(t-t_{1}\right)\left(t-t_{2}\right)$. As a consequence, one has that the expression $A^{2}+x A+I_{2}$ can be written as:

$$
A^{2}+x A+I=\left(A-t_{1} I_{2}\right)\left(A-t_{2} I_{2}\right)
$$

Using the properties of the determinant, one obtains that:

$$
\operatorname{det}\left(A^{2}+x A+I\right)=\operatorname{det}\left(A-t_{1} I\right) \operatorname{det}\left(A-t_{2} I\right)
$$

Given that $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $A-t_{1} I=\left(\begin{array}{cc}a-t_{1} & b \\ c & d-t_{1}\end{array}\right)$ and $A-t_{2} I=$ $\left(\begin{array}{cc}a-t_{2} & b \\ c & d-t_{2}\end{array}\right)$. Their determinants are $\left(a-t_{1}\right)\left(d-t_{1}\right)-b c$ and $\left(a-t_{1}\right)(d-$ $\left.t_{1}\right)-b c$, respectively. Moreover, we are given that $\operatorname{det} A=a d-b c=2$ and $\operatorname{tr} A=a+d=2$.

Putting all together, one has the following:

$$
\begin{aligned}
\operatorname{det}\left(A^{2}+x A+I\right) & =\operatorname{det}\left(A-t_{1} I\right) \operatorname{det}\left(A-t_{2} I\right) \\
& =\left[\left(a-t_{1}\right)\left(d-t_{1}\right)-b c\right]\left[\left(a-t_{1}\right)\left(d-t_{1}\right)-b c\right] \\
& =\left[a d-b c-(a+d) t_{1}+t_{1}^{2}\right]\left[a d-b c-(a+d) t_{2}+t_{2}^{2}\right] \\
& =\left(2-2 t_{1}+t_{1}^{2}\right)\left(2-2 t_{2}+t_{2}^{2}\right) \\
& =4-4 t_{2}+2 t_{2}^{2}-4 t_{1}+4 t_{1} t_{2}-2 t_{1} t_{2}^{2}+2 t_{1}^{2}-2 t_{1}^{2} t_{2}+t_{1}^{2} t_{2}^{2} \\
& =4-4\left(t_{1}+t_{2}\right)-2 t_{1} t_{2}\left(t_{1}+t_{2}\right)+2\left(t_{1}+t_{2}\right)^{2}+t_{1}^{2} t_{2}^{2} \\
& =4-4(-x)-2(-x)+2 x^{2}+1 \\
& =2 x^{2}+6 x+5,
\end{aligned}
$$

since $t_{1}+t_{2}=-x$ and $t_{1} t_{2}=1$.
The function $f(x)=2 x^{2}+6 x+5$ has a minimum of $\frac{1}{2}$, at $x=-\frac{3}{2}$ (solve the equation $\left.f^{\prime}(x)=0\right)$.

Therefore

$$
\operatorname{det}\left(A^{2}+x A+I_{2}\right)=2 x^{2}+6 x+5 \geq \frac{1}{2}
$$

Problem 3. Consider the sequence of real numbers defined as

$$
a_{n}=\frac{1}{2^{2 n}} \int_{0}^{\frac{\pi}{2}}(\cos x)^{2 n+1} d x
$$

Find the limit $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$.
Solution. We first obtain a recurrence relation between a_{n+1} and a_{n}. We
need to use integration by parts:

$$
\begin{aligned}
a_{n+1} & =\frac{1}{2^{2 n+2}} \int_{0}^{\frac{\pi}{2}}(\cos x)^{2 n+3} d x=\frac{1}{2^{2 n+2}} \int_{0}^{\frac{\pi}{2}}(\cos x)^{2 n+2}(\sin x)^{\prime} d x \\
& =\left.\frac{1}{2^{2 n+2}}(\cos x)^{2 n+2}(\sin x)\right|_{0} ^{\frac{\pi}{2}}+\frac{2 n+2}{2^{2 n+2}} \int_{0}^{\frac{\pi}{2}}(\cos x)^{2 n+1}(\sin x)^{2} d x \\
& =\frac{2 n+2}{2^{2 n+2}} \int_{0}^{\frac{\pi}{2}}(\cos x)^{2 n+1}(\sin x)^{2} d x=\frac{n+1}{2^{2 n+1}} \int_{0}^{\frac{\pi}{2}}(\cos x)^{2 n+1}\left(1-\cos ^{2} x\right) d x
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
a_{n+1} & =\frac{n+1}{2^{2 n+1}} \int_{0}^{\frac{\pi}{2}}(\cos x)^{2 n+1}\left(1-\cos ^{2} x\right) d x \\
& =\frac{n+1}{2^{2 n+1}} \int_{0}^{\frac{\pi}{2}}(\cos x)^{2 n+1} d x-\frac{n+1}{2^{2 n+1}} \int_{0}^{\frac{\pi}{2}}(\cos x)^{2 n+3} d x \\
& =\frac{n+1}{2} a_{n}-2(n+1) a_{n+1}
\end{aligned}
$$

This means that $(2 n+3) a_{n+1}=\frac{n+1}{2} a_{n}$, from which it follows that $\frac{a_{n+1}}{a_{n}}=$ $\frac{n+1}{4 n+6}$, so

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{n+1}{4 n+6}=\frac{1}{4} .
$$

CCSU Regional Math Competition, 2018 SOLUTIONS II

Problem 4. Find the limit

$$
\lim _{x \rightarrow 0} \frac{\sin ^{-1} x-\tan ^{-1} x}{x^{3}}
$$

Solution. Solution. Since $\lim _{x \rightarrow 0}\left(\sin ^{-1} x-\tan ^{-1} x\right)=0$ and $\lim _{x \rightarrow 0} x^{3}=0$ we can apply L'Hôpital's rule

$$
\begin{aligned}
L=\lim _{x \rightarrow 0} \frac{\sin ^{-1} x-\tan ^{-1} x}{x^{3}} & =\lim _{x \rightarrow 0} \frac{1 / \sqrt{1-x^{2}}-1 /\left(1+x^{2}\right)}{3 x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{1+x^{2}-\sqrt{1-x^{2}}}{3 x^{2} \sqrt{1-x^{2}}\left(1+x^{2}\right)} \\
& =\lim _{x \rightarrow 0} \frac{1+\left(1-\sqrt{1-x^{2}}\right) / x^{2}}{3 \sqrt{1-x^{2}}\left(1+x^{2}\right)} .
\end{aligned}
$$

The limit in the numerator is

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\sqrt{1-x^{2}}}{x^{2}} & =\lim _{x \rightarrow 0} \frac{1-\sqrt{1-x^{2}}}{x^{2}} \cdot \frac{1+\sqrt{1-x^{2}}}{1+\sqrt{1-x^{2}}} \\
& =\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}\left(1+\sqrt{1-x^{2}}\right)} \\
& =\lim _{x \rightarrow 0} \frac{1}{\left(1+\sqrt{1-x^{2}}\right)}=\frac{1}{2} .
\end{aligned}
$$

The initial limit is thus $\left(1+\frac{1}{2}\right) / 3=\frac{1}{2}$.

Problem 5. We define an operation © that interleaves two sequences as follows: For $A=a_{1}, a_{2}, \ldots$ and $B=b_{1}, b_{2}, \ldots$, let $A \odot B=a_{1}, b_{1}, a_{2}, b_{2}, \ldots$. Now, setting $C=1,0,1,0, \ldots$, we define D to be the sequence such that $C \odot D=D$. Find $\sum_{i=1}^{2018} D_{i}$.
Solution. Among the first 2018 terms of D there are 1009 in odd-index positions and 1009 in even-index positions. Those in odd positions are exactly
the first 1009 terms of sequence C, consisting of 505 ones and 504 zeroes, so their sum is 505 . Those in even positions are identical to the first 1009 terms of D, so they split into 505 terms of C and 504 terms of D, etc. This iterative procedure eventually terminates, and yields the sum
$505+253+126+63+32+16+8+4+2+1+1=1011$.

Problem 6. Show that there exists a unique function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the following two conditions:
a) $x^{3}-(f(x))^{3}+x f(x)=0$ for all $x \in \mathbb{R}$;
b) $f(x)>0$ for all $x>0$.

Solution. Let $g(y)=x^{3}-y^{3}+x y$. Then $g^{\prime}(y)=-3 y^{2}+x$ for all $y \in \mathbb{R}$. For $x=0$ the equation $g(y)=-y^{3}=0$ has a unique solution $y=f(0)=0$. For $x<0$ the derivative $g^{\prime}(y)=-3 y^{2}+x<0$ for all $y \in \mathbb{R}$ so that g is decreasing from $\lim _{y \rightarrow-\infty} g(y)=+\infty$ to $\lim _{y \rightarrow \infty} g(y)=-\infty$ and thus, the equation $g(y)=0$ has a unique solution $y=f(x)$ by the IVT. For $x>0$ the derivative $g^{\prime}(y)>0$ for $0<y<c$ and $g^{\prime}(y)<0$ for $y>c$ where $c=(x / 3)^{1 / 2}$ is the only positive solution to the equation $g^{\prime}(y)=-3 y^{2}+x=0$. Hence, g is increasing from $g(0)=x^{3}$ to $g(c)$ and decreasing from $g(c)$ to $\lim _{y \rightarrow \infty} g(y)=-\infty$. Since $x^{3}>0$ there is only one solution $y=f(x)>0$ to the equation $g(y)=0$ by the IVT. This concludes the proof.

