
CCSU Regional Math Competition, 2017

SOLUTIONS I

Problem 1. Suppose the graph of a quadratic function is concave down and
passes through the points (−1, 1) and (1, 1). Find the smallest possible area
of the region bounded by the graph and the x-axis.

Solution. Since the graph has a vertical axis of symmetry and (−1, 1)
and (1, 1) are symmetric about the y-axis, it follows that the vertex of the
parabola is of the form (0, c) with c > 1. Hence, the quadratic function is of
the form f(x) = c − ax2 where f(1) = c − a = 1 or a = c − 1. Hence, the
x-intercepts are the solutions of the equation c− (c− 1)x2 = 0 given by

x1 = −
√

c

c− 1
, x2 =

√
c

c− 1
.

The area under the graph is given by the integral

A(c) =

∫ x2

x1

[c− (c− 1)x2] dx = 2cx2 −
2

3
· (c− 1)x32

=
4

3
· c3/2√

c− 1
.

It is enough to minimize the following function

f(c) =
9

16
· A(c)2 =

c3

c− 1

for c > 1. Differentiating using the quotient rule, we have

f ′(c) =
c2(2c− 3)

(c− 1)2

and thus, the critical point is c = 3/2. Since the limits towards the ends are

lim
c→∞

f(c) = lim
c→1+

f(c) =∞

we deduce that A(3/2) = 2
√

3 is the minimal area.
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Problem 2. Solve for the angles A, B, C of a triangle if

cosA+ cosB + cosC =
3

2
.

Solution I. Observe that C = π − (A+B) and thus,

cosC = − cos(A+B).

Hence, changing the sum into a product and using the half-angle formula,
we can rewrite the equation as

2 cos
A+B

2
cos

A−B
2
− 2 cos2

A+B

2
+ 1 =

3

2
.

The equation can be further manipulated into a quadratic

x2 − x cos
A−B

2
+

1

4
= 0 where x = cos

A+B

2
.

The discriminant with respect to x is given by

∆ = cos2
A−B

2
− 1 = − sin2 A−B

2
.

To get real roots we must have A = B and by symmetry the initial equation
leads to A = B = C = π/3.

Solution II. One solution is easy to find. Suppose A = B = C, so all angles
are π/3. Then the cosines sum to 3/2, as desired. We claim that this is the
only solution. To that end, consider the line tangent to y = cosx at x = π/3
given by the graph of the function

L(x) =
1

2
−
√

3

2

(
x− π

3

)
.

We now show that cosx ≤ L(x) for all x in [0, 2π/3], with equality holding
only at x = π/3. This is immediate over [0, π/2], since cosx is concave down
on that interval. Further, we note that

d

dx
[L(x)− cosx] = −

√
3

2
+ sinx,
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which is positive for x in the open interval (π/3, 2π/3), hence L(x) − cosx
is increasing on that interval. Since L(x) − cosx = 0 at x = π/3, we have
L(x)− cosx > 0 for all x in (π/3, 2π/3].

We can now rule out all other triangles. Suppose angles A, B, and C are
no greater than 2π/3, and at least one of them is not π/3. Then, noting that
A+B + C = π, we have

cosA+ cosB + cosC < L(A) + L(B) + L(C) =
3

2
.

So there is no solution of this type. On the other hand, suppose one angle,
say C, is greater than 2π/3. Then cosC < −1/2. Since cosx is never greater
than 1, we have

cosA+ cosB + cosC < 1 + 1− 1

2
=

3

2
.

So there is no solution of this type, either. This proves the claim.

Problem 3. For each positive integer n consider the integral

In =

∫ 1

0

dx

1 + x1/n
.

Prove the following three statements:
a) For each n there exists a unique constant 0 < cn < 1 such that

1 + c1/nn = 1/In.

b) The sequence In converges to 1/2.
c) The sequence cn converges to 1/e where e is the Euler number.

Solution. a) Let f be the function defined for t ≥ 0 by

f(t) =

∫ t

0

dx

1 + x1/n
.

According to the Fundamental Theorem of Calculus, f is continuous on the
closed interval [0, 1], differentiable on the open interval (0, 1), and

f ′(t) =
1

1 + t1/n
.
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By the Mean Value Theorem, there is cn in the open interval (0, 1) such that

f(1)− f(0) = f ′(cn) or 1 + c1/nn =
1

In
.

Since f ′ is strictly decreasing, such a number cn is unique, proving the claim.
b) For every n > 0 and x ∈ [0, 1], we have

1

2
≤ 1

1 + x1/(n+1)
≤ 1

1 + x1/n
.

By integrating these inequalities we get 1/2 ≤ In+1 ≤ In. Hence, the se-
quence In is decreasing and bounded below by 1/2 and thus, convergent. To
calculate its limit, let us fix ε such that 0 < ε < 1 and observe that

1

1 + x1/n
≤ 1 for x ∈ [0, ε] and

1

1 + x1/n
≤ 1

1 + ε1/n
for x ∈ [ε, 1].

By integrating these inequalities, we get∫ ε

0

dx

1 + x1/n
≤ ε and

∫ 1

ε

dx

1 + x1/n
≤ 1− ε

1 + ε1/n
.

By adding the two inequalities term by term and using the lower bound,

1

2
≤ In ≤ ε+

1− ε
1 + ε1/n

so that
1

2
≤ lim

n→∞
In ≤ ε+

1− ε
2

.

By taking ε→ 0 we conclude that In converges to 1/2.
c) From a) and b) we know that for every n > 0

cn =

(
1− In
In

)n
and lim

n→∞

1− In
In

=
1
2
1
2

= 1.

Therefore we need to use L’Hôpital’s rule to find the limit:

lim
n→∞

ln cn = lim
n→∞

n ln

(
1− In
In

)
= lim

n→∞

ln
(

1−In
In

)
1
n

= lim
n→∞

In
1−In ·

(
− 1
I2n
· ∂In
∂n

)
− 1
n2

= lim
n→∞

n2 · 1

In(1− In)
· ∂In
∂n

= lim
n→∞

1

In(1− In)
· lim
n→∞

n2∂In
∂n

= 4 lim
n→∞

n2∂In
∂n

.
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By differentiating and taking limit under the integral sign, we have

lim
n→∞

n2∂In
∂n

= lim
n→∞

n2

∫ 1

0

− x1/n lnx

(1 + x1/n)2
·
(
− 1

n2

)
dx

= lim
n→∞

∫ 1

0

x1/n lnx

(1 + x1/n)2
dx =

1

4

∫ 1

0

lnx dx

=
1

4
· lim
ε→0+

(x lnx− x)|1ε = −1

4
.

We conclude that the sequence cn converges to 1/e since limn→∞ ln cn = −1.

Note. To justify the claim that we can take limit under the integral sign we can use a
direct argument. Consider the difference:

Dn =
1

4

∫ 1

0

lnx dx−
∫ 1

0

x1/n lnx

(1 + x1/n)2
dx =

1

4
·
∫ 1

0

(
1− x1/n

1 + x1/n

)2

lnx dx

and let us fix ε again such that 0 < ε < 1. The function f below is decreasing for t ≥ 0
having negative derivative:

f(t) =
1− t
1 + t

, f ′(t) =
−2

(1 + t)2
.

Since lnx ≤ 0 for 0 < x ≤ 1, we have the following inequalities

ε ln ε− ε =

∫ ε

0

lnx dx ≤ An =

∫ ε

0

(
1− x1/n

1 + x1/n

)2

lnx dx ≤ 0(
1− ε1/n

1 + ε1/n

)2 ∫ 1

ε

lnx dx ≤ Bn =

∫ 1

ε

(
1− x1/n

1 + x1/n

)2

lnx dx ≤ 0

for all n > 0 where An, Bn are labels. By taking n→∞ we deduce that

ε ln ε− ε ≤ lim
n→∞

An ≤ 0, and lim
n→∞

Bn = 0.

Since 4Dn = An +Bn we conclude that for every 0 < ε < 1 we have

ε ln ε− ε ≤ 4 lim
n→∞

Dn ≤ 0,

and by taking ε→ 0 we conclude that Dn converges to 0 proving the claim.
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CCSU Regional Math Competition, 2017

SOLUTIONS II

Problem 4. Suppose r is a positive real number. Consider the family of
circles Ci in the plane, where C0 has radius 1 and center (1, 1) and for each
integer i ≥ 1, the circle Ci has radius ri, lies in the first quadrant on the
right side of Ci−1, is externally tangent to Ci−1, and is tangent to the x-axis.
Let xi be the x-coordinate of the center of Ci. Find r such that the sequence
xi converges to 7/3.

Solution I. To begin, we note that r < 1. Otherwise, the circles’ centers
would form an unbounded set rather than settling down around 7/3. Let us
examine the segment joining the centers of two adjacent circles, say Ci and
Ci+1. Its length is ri + ri+1, the sum of the radii. To compute its slope we
consider the usual right triangle, where the rise is ri+1 − ri and the run, by
the Pythagorean relation, is 2

√
r2i+1. Hence the slope is

ri+1 − ri

2
√
r2i+1

=
ri(r − 1)

2ri
√
r

=
r − 1

2
√
r
.

Since this value is independent of i, it follows that all the centers lie on one
straight line, say L. Since r < 1, the slope of L is negative. Since ri → 0 as
i → ∞, it is clear that L crosses the x-axis at 7/3, as the shrinking circles
are converging to that point.

Consider now the segment joining (1, 1) and (7/3, 0). It lies on L, so its
slope can be calculated in two ways:

−1

4/3
=
r − 1

2
√
r
.

Solving for r, we find the unique positive solution r = 1/4.

Solution II. The circles Ci and Ci−1 are externally tangent if and only if
the distance between their centers (xi, r

i) and (xi−1, r
i−1) is ri + ri−1 or

(xi − xi−1)2 + (ri − ri−1)2 = (ri + ri−1)2.

Solving for xi − xi−1 > 0 we get

(xi − xi−1)2 = 4riri−1, xi − xi−1 = 2r(2i−1)/2.
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Hence, x0 = 1, x1 = 1 + 2r1/2, and by summation, for each i ≥ 1 we have

xi = 1 + 2r1/2(1 + r + r2 + ...+ ri−1).

If r ≥ 1 the inequality xi ≥ 1 + 2ir1/2 proves that the sequence (xi) is
divergent. Hence, we must have 0 < r < 1. In this case, by using the fact
that the sum of a geometric series with initial term a and ratio |r| < 1 is
a/(1− r), the limit of the sequence is

lim
i→∞

xi = 1 + 2r1/2
1

1− r
=

7

3
,

r1/2

1− r
=

2

3
, 2r + 3r1/2 − 2 = 0.

The last equation is quadratic in r1/2 and solving for the positive root, we
get r1/2 = 1/2 or r = 1/4.

Problem 5. Find all triples (x, y, z) of positive real numbers such that

x+
2

y
= 3y y +

2

z
= 3z, z +

2

x
= 3x.

Solution I. Notice that x = y = z = 1 is a solution. Assume x > 1. Then
z = 3x− 2/x > 1 and thus, y = 3z − 2/z > 1. If we add all three equations
together we get

x+ y + z =
1

x
+

1

y
+

1

z

where the left hand side is > 3 and the right hand side is < 3. Hence, there
is no solution with x > 1. By symmetry, there is no solution with 0 < x < 1
either. This concludes that x = y = z = 1 is the only solution.

Solution II. Let f(t) = 3t − 2/t be a function defined for t > 0. Since the
derivative f ′(t) = 3 + 2/t2 is positive, we deduce that f is strictly increasing.
The system can be reduced to a fixed point problem: f 3(x) = x where f 3

denotes the composition of f with itself 3 times. This problem can be further
reduced to the fixed point problem: f(x) = x. Indeed, if f(x) > x, then by
repeated application of f we get f 3(x) > x. A similar argument works for
f(x) < x. The equation f(x) = x is equivalent to 2x = 2/x or x2 = 1. Since
x > 0, the only solution is x = 1. Hence, x = y = z = 1.

Problem 6. For each positive integer n, let Kn be the graph on n vertices
such that every two vertices are connected by an edge which is colored either
red or blue. Show that Kn must contain
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a) at least two monochromatic triangles if n = 6;
b) at least four monochromatic triangles if n = 7.

You may assume part a) in part b).

Solution. (a) We first show that K6 contains one monochromatic triangle.
Consider one vertex, say V , of K6. There are five edges meeting at V ; at least
three of them must be of the same color, say red, by the Pigeonhole Principle.
(If not, there could be at most two red and at most two blue edges, but this
would only account for four edges.) Let A, B, and C denote the vertices
connected to V by these red edges. If triangle ABC is monochromatic of
blue color, then we are done. If not, it must have an edge of red color, which
forms a monochromatic triangle with two of the red edges leading to V .

Next we show that K6 contains a second monochromatic triangle. Sup-
pose ABC is monochromatic of blue color, and let D, E, and F be the other
three vertices of K6. The vertex D has three edges leading to A, B, and C;
if two of these edges have blue color, they produce a second monochromatic
triangle with one edge of ABC. The same is true of vertices E and F . If no
second triangle arises in this way, then each of D, E, and F has at least two
edges of red color leading to A, B, or C. Now we consider triangle DEF . If
it is monochromatic of blue color, then we are done. If not, it must have an
edge of red color. Since the vertices of this edge both have two red edges lead-
ing to vertices A, B, or C, two of these edges must share a common vertex
by the Pigeonhole Principle. This gives a second monochromatic triangle.

(b) Consider one vertex, say V , of K7. Ignoring V and the six edges
leading to it leaves us with a two-colored K6, which by part (a) contains two
monochromatic triangles, say T and U .

Case 1. The two monochromatic triangles share a vertex, say Z. By
ignoring Z and invoking part (a) for the K6 graph not containing Z, we get
two additional monochromatic triangles, for a total of four.

Case 2. The two monochromatic triangles do not share a vertex. Then
they must use all six vertices of K7 other than V . We pick one of these
six, say a vertex W of triangle T , and again invoke part (a) for the K6

graph not containing W but containing triangle U . This gives us at least one
monochromatic triangle other than T and U , for a total of three.

Since only seven vertices are available in K7 and we have at least three
monochromatic triangles, two of these triangles must share a vertex by the
Pigeonhole Principle. By Case 1, we conclude that K7 has at least four
monochromatic triangles.
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