
CCSU Regional Math Competition, 2014

SOLUTIONS I

Problem 1. You are floating down the middle of a river. It is 1000 feet
wide and flows at 11 feet per second. Suddenly you notice a waterfall 230 feet
ahead. Unfortunately, you can only swim 10 feet per second in still water.
Can you reach the bank before being swept over the falls?

Solution. Assume that the swimmer’s velocity in still water is a constant
vector xi + yj with x2 + y2 = 100. That allows us to write x = 10 cos θ and
y = 10 sin θ and to look for an angle θ such that at the time T when the
swimmer reaches the bank, xT + 11T ≤ 230. Since yT = 500, we have

T =
500

y
=

500

10 sin θ
.

Therefore
10 cos θ · 500

10 sin θ
+

11 · 500

10 sin θ
≤ 230.

Thus, we are looking for an angle θ ∈ [0, π] such that the following function

f(θ) = 50 cos θ − 23 sin θ + 55

attains a negative value. Since f ′(θ) = −50 sin θ− 23 cos θ, the critical point
of this function is an angle c where tan c = −23/50 = −0.46. Now using the
trigonometric identities

sin θ =
tan θ√

1 + tan2θ
and cos θ = − 1√

1 + tan2θ

we obtain

sin c =
0.46√

1 + 0.462
and cos c = − 1√

1 + 0.462
.

Then f(c) < 0 if and only if

55
√

1 + 0.462 < 50 + 23 · 0.46.

Computing the squares on both sides we get 3665.09 < 3669.93 proving that
the answer is yes.
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Problem 2. We are given 2015 positive integers. We know that if we
take away any one of them, the remaining 2014 integers can be partitioned
into two sets with the same number of elements and the same sum of ele-
ments. Show that all integers must be equal.

Solution. Let x1, x2, ..., x2015 be the sequence of integers with the given
property, say P . Assuming that x1 is the smallest term, yi = xi − x1 is
another sequence with the property P but the smallest term is zero. If S
is the sum of all yi, it follows that S − yi is even for each i. Hence, yi are
all even since y1 = 0. If we divide each yi by 2 we get another sequence of
integers yi/2 with the property P and the smallest term zero. Iterrating the
division by 2 we get an infinite descend showing that all yi = 0 and thus, all
integers xi are equal.

Second Solution. The problem says that there is a system of homoge-
neous linear equations whose (2n + 1)× (2n + 1) (coefficient) matrix A has
the following three properties:

(1) The diagonal entries are aii = 0.

(2) The off diagonal entries are aij = ±1 for i 6= j.

(3) The sum of entries in each row equals zero.

Property (3) is invariant under elementary row operations and implies that
the rank of the matrix A is at most 2n. Properties (1) and (2) imply that by
adding the first row to each of the other rows we get a submatrix, which is
the identity 2n×2n matrix mod 2. Hence the rank of the matrix A is at least
2n. We conclude that the reduced echelon form of A has exactly 2n entries 1
and satisfies property (3). Thus, A is row equivalent to the following matrix:

1 0 ... 0 −1
0 1 ... 0 −1
... ... ... ... ...
0 0 ... 1 −1
0 0 ... 0 0

 .
This proves that the 2n+1 numbers (not necessarily integers) must be equal
to each other.
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Problem 3. Let P be the parabola y = x2. Let A be any point on P
other than the vertex. Let L be the line orthogonal to the tangent line to
P at A. Let B be the other point at which L crosses P . Find the small-
est possible area of the bounded region lying between P and the segment AB.

Solution. Let A = (−a, a2) and B = (b, b2) with a > 0 be the two points
in the problem. The slope of the tangent line at A is −2a and thus, the slope
of the normal line AB is

b2 − a2

b+ a
=

1

2a
, b = a+

1

2a
.

The area under the parabola P between −a and b is

A1 =

∫ b

−a
x2dx =

b3 + a3

3

while the area under the segment AB between −a and b is

A2 = (b+ a) · b
2 + a2

2
=
b3 + b2a+ ba2 + a3

2
.

The problem asks to minimize the area

A = A2 − A1 =
(b+ a)3

6
=

1

6

(
2a+

1

2a

)3

.

This is the same as minimizing 2a + 1
2a

for a > 0. The critical point of this
function is a = 0.5 and the limits at the ends are both +∞. Hence, the
minimal area is A = 4

3
.
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CCSU Regional Math Competition, 2014

SOLUTIONS II

Problem 4. Show that there is a point A on the surface S of a cube of
side 1 that can be joined with any other point on S by a piecewise straight
line path contained in S of length at most 2.

Solution. We can build the unit cube by folding the following symmetric
planar shape made of five squares and four isosceles right triangles:

By taking A to be the center of symmetry we see that any other point
can be connected by a line segment with A. This line segment folds into a
broken line on S of length at most AP = 2.

Problem 5. Let x1, x2, ..., x49, x50 be 50 real numbers, not all equal. The
mean µ and the standard deviation σ are given by

µ =
1

50

50∑
i=1

xi, σ =

√√√√ 1

50

50∑
i=1

(xi − µ)2.

The z-score for a particular value xk is given by z =
xk − µ
σ

. It measures

the distance of xk from the mean in standardized units of σ. Find the largest
possible value of the z-score for x1 and show why it is the largest possible.
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Solution. Let x1 = b and let x2 = x3 = x4 = ... = x50 = a where a < b .
Then for the mean and standard deviation we have

µ =
b+ 49a

50
σ =

√
(b− µ)2 + 49(a− µ)2

50

Substituting for µ, we find that b− µ = 49(b−a)
50

and a− µ = a−b
50

.
Substituting these into the expression for standard deviation we obtain

σ =

√
(49)2(b− a)2 + 49(a− b)2

(50)3
=

√
49

50
(b− a). (1)

Then the z-score for x1 becomes

z =
b− µ
σ

=
√

49 = 7 .

To see why this is the largest possible value, take any other set of values
(but not all equal) for the xi’s . Now swap x1 with whichever xk is the largest
so that x1 has the highest z-score. We claim that this z-score is less than
or equal to 7. Let a be the average of x2 through x50. If we replace each
x2 through x50 by the number a, then the average of all the xi will remain
the same, as will x1 − µ. On the other hand, the standard deviation will
decrease. Since the square of an average of a collection of real numbers is
less than or equal to the average of the squares, we have

(a− µ)2 ≤
50∑
i=2

(xi − µ)2

49

It follows that the revised standard deviation,√
49(a− µ)2 + (x1 − µ)2

50

will be less than or equal to the standard deviation (??), so that the z-score
for x1 will have increased to 7 (or stayed the same).

Second Solution. If we let zk = (xk − µ)/σ, then the problem is asking
to find the maximum value of the function

z1 = −z2 − z3 − ...− zn = f(z2, ..., zn)
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subject to the constraint

g(z2, z3, ..., zn) = (z2 + z3 + ...+ zn)2 + z22 + z23 + ...+ z2n = n.

The Lagrange multiplier λ is a solution to the system ∇f = λ∇g, g = n. By
the symmetry of the variables, the only solution of the system is obtained
when z2 = z3 = ... = zn = t where (n − 1)2t2 + (n − 1)t2 = n. Hence, the
maximum value of z1 is

√
n− 1 and is attained at x1 = 1 and xk = 0 for

k > 1 when µ = 1/n and σ =
√
n− 1/n > 0.

Third Solution. Note that for any distribution of the variables x1, x2,
..., xn there exists a translation such that x1+x2+...+xn = 0 or equivalently,
x1 = −x2 − x3 − ...− xn. By using this translation, we need to maximize

z(x1) :=
x1
√
n√

x21 + x22 + ...+ x2n
=
√
n ·
(

1 +
x22 + x23 + ...+ x2n

(x2 + x3 + ...+ xn)2

)− 1
2

.

The following sum of squares is zero if and only if x2 = x3 = ... = xn:

∑
2≤i<j≤n

(xi − xj)2 = (n− 2)
n∑

i=1

x2i − 2
∑

2≤i<j≤n

xixj ≥ 0.

Equivalently, the following inequality is an equality

(n− 1)
n∑

i=2

x2i ≥

(
n∑

i=2

xi

)2

.

if and only if x2 = x3 = ... = xn. So, the maximum of z(x1) is

√
n

(
1 +

1

n− 1

)− 1
2

=
√
n− 1.
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Problem 6. Given C > 0, find all non-negative continuous functions f
defined on [0,∞), which satisfy the following inequality for all x ≥ 0

f(x) ≤ C ·
∫ x

0

f(t)dt.

Solution. Since

f(x) ≤ C

∫ x

0

f(t)dt

and e−Cx > 0 we have

e−Cxf(x)− e−CxC

∫ x

0

f(t)dt ≤ 0,

or
d

dx

[
e−Cx ·

∫ x

0

f(t)dt

]
≤ 0

for every x ≥ 0. This yields by monotony

g(x) = e−Cx ·
∫ x

0

f(t)dt ≤ g(0) = 0.

Since f is continuous and f ≥ 0, the integral is zero only for f = 0.

Second Solution. For a fixed L > 0 let M be the maximum of f on the
closed interval [0, L]. Then

f(x) ≤ C ·
∫ x

0

Mdt = CMx.

Hence

f(x) ≤ C ·
∫ x

0

CMtdt =
(Cx)2

2!
·M.

Continuing in that way n times, where n is a non-negative integer, we get
for all x in [0, L] and n ≥ 0

f(x) ≤ (Cx)n

n!
·M ≤ (CL)n

n!
·M.

Taking the limit as n → ∞ we get f ≤ 0 and since f ≥ 0 we get f = 0 on
[0, L]. But L > 0 was taken arbitrary and thus, f = 0 on [0,∞).
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