CCSU Regional Math Competition, 2010

PART I

Each problem is worth ten points. Please be sure to use separate pages to write your solution for every problem.

- 1. Show that an integer n > 1 is prime if and only if n divides $\binom{n}{k}$ for every integer $k \in [1, n-1]$. (Note: $\binom{n}{k}$ is defined to be $\frac{n!}{k!(n-k)!}$.)
- 2. a) Prove that the equation

$$x^3 - x - 1 = 0 \tag{1}$$

has one real and two complex roots.

b) Let a and b be any two of the three roots of (1). Show that $(a - b)^2$ is a root of the equation

$$z^3 - 6z^2 + 9z + 23 = 0.$$

3. Consider the following tree

which continues ad infinitum. Each element of the tree has two children – the rule for generating the children is that $\frac{i}{j}$ has children $\frac{i}{i+j}$ on the left and $\frac{i+j}{j}$ on the right. Prove that every positive rational number appears in this tree exactly once.

CCSU Regional Math Competition, 2010

PART II

Each problem is worth ten points. Please be sure to use separate pages to write your solution for every problem.

- 4. Find the smallest positive real number x such that the sine of x degrees equals the sine of x radians.
- 5. Define a triangular array of numbers (somewhat like Pascal's triangle) as follows. For each positive integer n, row n has exactly n terms. Each row begins and ends with 1. The remaining terms are given by the formula

$$a_{n,k} = 1 + a_{n-1,k-1} + a_{n-1,k} - a_{n-2,k-1}$$
, for $n \ge 3, 2 \le k \le n-1$.

where $a_{n,k}$ is the kth entry of row n. How many times does 2010 appear in the triangle?

6. Let $f: \mathbb{R} \to \mathbb{R}$ be such that f''(x) exists and is continuous for all x. Suppose that for every $a, b \in \mathbb{R}$ with b > a we have

$$\int_{2a}^{2b} f(x)dx = 4 \int_{a}^{b} f(x)dx.$$

Prove that there exists a constant C such that f(x) = Cx.