CCSU Regional Math Competition, 2010
SOLUTIONS

n

1. Show that a number n > 1 is prime if and only if n divides ( k) for every integer k € [1,n — 1}.

Solution. G:) = n(nwl)';gn_kﬂ) for every k € [0,n]. If n is prime then n divides (z) for every

k € [1,n — 1] since in the numerator there is a factor n and the denominator k! is not divisible by n for
every k < n. Now let n be a composite number and k& < n be a prime number that divides n. Let also

m be the largest integer such that k™ divides n. The only factor in the numerator of G{L) which is

divisible by k is n (in fact n is divisible even by k™) and its denominator k! is also divisible by k.
n n

Therefore ( k) is divisible by k™ * but is not divisible by k™, hence ( k) is not divisible by n.

2. a) Prove that the equation
| X3 x~1=0 ' (1)
has one real and two complex roots.
b) Let a and b be any two of the three roots of (1). Show that (a — b)? is a root of the equation
23— 622+ 9z + 23 = 0. 2)

Solution. a) Let f(x) = x® — x — 1. Since f(x) isa cubic polynomial it has at least one real root, The

derivative of f(x) is f/(x) =3x*—1 and f/(x) =0 for x = :_h—?. Hence f(x) increases on the

intervals (ww,wg) and (%—_3—,00) and decreases on the interval (——ﬁ ?) Thus f(x) has a local
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. V3
maxipum at x = — —

T and f m_;l is negative. Therefore f(x) has only one .real root which is in

the interval (w?, 00).
b) Let a, b and ¢ be the three distinct roots of (1). Since x* —x —1 = (x —a)(x — b)(x — ¢}, we
conclude that
abc=1, ab+bc+ac=-1 and a+b+c=0.

Also, 0= (a+ b+ c)? = a® + b? + ¢ + 2(ab + bc + ac) and therefore

a*+ b+ =2
Since a, b and ¢ are roots of (1) we have

Ad=a+1, PP=b+1,cl=c+1
a*=a*+a, b*=b*+bandc* =c* +c.

Also, a?bh + ab?® = ab{a + b) = —abc = —1, hence

a’b +ab? = —1
Now we substitute z = (a — b)? in (2) and using the above equivalences where appropriate we obtain
consequently:

(a —b)® —6(a~b)+9(a~b)?+23.
= (a® — 3a2b + 3ab? — b*)? — 6(a* — 4a3b + 6a*b? ~ 4ab® + b*) +9a? — 18ab + 9b* + 23
=(a+1-3a*b+3ab? —b—-1)*—6{a*+a—4(a+1)b+6a*h* —4a(b+ 1)+ b* +b) +
+9a? — 18ab + 9b% + 23
= q? — 6a3b + 9a*h? — 18a%h? + 9a?b* — 6ab® + b? — 2ab + 12a%b? — 36a*b* — 6a* —
—6b% + 48ab + 18a + 18b + 9a® — 18ab + 9b* + 23
=—6{a -+ 1)b+9(a® + a)b? — 18(a+ (b + 1)+ 9a*(h* + b) —6a(b+ 1) —



—24a?b? + 4a* + 4b* + 28ab + 18a + 18b + 23
= —6ab — 6b + 9a?b? + 9ab? — 18ab — 18a — 18b — 18 + 9a?b* + 9a?b ~
—6ab — 6a — 24a®bh® + 4a* + 4b* + 28ab + 18a + 18b + 23
= —6a’bh? + 9a2b + 9ab® + 4a® + 4b* — 2ab — 6a — 6b + 5
= —6a?h? — 9+ 8 — 4c? - 2ab + 6¢ + 5.
Therefore we have to prove that —6a?b? — 4¢? — 2ab + 6¢ + 4 = 0, or equivalently,
—~6a2b2c? — act — 2abc? + 6¢° + 4¢% =0,
We have
—6aZb?c? — 4¢* — 2abc? + 6¢3 + 4c?
= —6—4(c?+c)—2c+6{(c+1)+4c* =
which completes the proof.

3. Consider the following tree
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which continues ad mﬂmtum Fach element of the tree has two children — the rule for generating

the children is that - has children _; on the left and T on the right. Prove that every positive

rational humber appears in this tree exactly once.
Solutmn First, we show that each fraction is in reduced form. Clearly this is true at the top of the tree.
Suppose L is a vertex on the highest level such that ¢/s is not in reduced form. If is a feft child, then its
parent 1s N IS also not in reduced form, contradicting the fact tha‘i - 15 the h1ghest such fraction. If is
a right Child then its parent is — leadmg to the same contrad:ctlon

Next, we show that each fractzon occurs at some vertex. 1 occurs. Suppose - is a fraction which does
not occur, and suppose further that 1t is the one with smallest denominator, and of those the one Wlth
smallest numerator. If 7 > s then — cannot occur either. since it would be a paxent of = but =2 has

the same denominator as - “anda smaﬂer numerator, a confradiction. If r < s then — doesn t occur for

the same reason, and it has a smaller denominator than - > again a contradiction.
Finally, we show that no reduced fraction occurs more than once. First, clearly 1 occurs only once.
since otherwise it would be a child of E, and clearly the rule implies that both children are not equal

1. Now, suppose some fraction occurs more than once. Let 1;» have, among these, the smallest
denominator, and then the smallest numerator. If » < s then ?; is a left child of two distinct vertices,
each equal to ;’:—;, which has a smaller denominator, thus leading to a contradiction. If r > s, then E isa

. . . r—5 N N .
right child of two vertices, each - which have the same denominator but a smaller numerator, again
a contradiction.



4. Find the smallest positive real number x such that the sine of x degrees equals the sine of x radians.

. . .. 180x .
Solution. If we express both angles in degree measure, their sizes are X and — For convenience we

setz = }—?. Now for x > 0 we clearly have z > x. For very small x the angles represented by x and z

will both lie in Quadrant 1, so their sine values cannot be equal. As x increases. the z angle will rotate
into Quadrant 11, while the x angle remains in Quadrant 1; it now becomes possible for their sine values
to match. In particular, the symmetry that governs this situation is expressed by the identity sin 8 =
sin (7 ~ 8). For 8 in Quadrant I (and = — & therefore in Quadrant II), it is easy to see by considering
reference angles that the identity is not only true, but is in fact the only way that equality of sine values

can occur. Hence we will have our solution precisely when z = 180 — x, or equivalently, ITX =
180 ~ x. This linear equation is easily solved, and we find
1807
X m —————,
180 + =

5. Define a triangular array of numbers (somewhat like Pascal’s triangle) as follows. For each
positive integer n, row n has exactly n terms. Each row begins and ends with 1. The remaining
terms are given by the formula

Opp = 1+ Quog -1+ Qno ke = Tn-24-15

where d, ;, is the k’th entry of row n. How many times does 2010 appear in the triangle?

Solution. After writing out several rows of the triangle, a simple pattern is observed: reading down
along any “diagonal' of the triangle (where the first diagonal is just the left-end sequence of pure 1's.
and successive diagonals run parallel to this one), we find an arithmetic sequence.

1
1 1
1 2 1
1 3 3 1
1 4 5 4 1
1 5 7 7 5 1

Specifically, it appears that @, is the (n — k + 1)'th term in a sequence that begins with 1 and has
uniform step-size k — 1. This yields the following formula, which we hope will hold for all terms:

anp = 1+ (=) — 1)
_ Proceeding by induction, we let P(n) be the statement that the proposed formula holds for every term
in row n. It is trivial to check that P(1) and P{Z) are true.

We now consider a single row n with n > 3, and assume that P(j) is true for each j <n. Our formula
obviously holds for the first and last terms in the row. For an interior term, we start with the delinition
and then apply P{n — 1) and P(n — 2) to obtain
g = 1+ Aneg -1 T neak ™ On-2,6-1
:1+[1+(n-~k)(k——2)}~%~[1+(nw1—k)(kw1)]—[1+(nw~1—-k)(!cw2)]
14l nk—2n—ki+2k+1+nk-n—k+1-k*+k—1-nk+2n+k~-2+k*-2k
=14+nk—n~—k*+k
=1+ n-kyk-1),
as desired. Hence P(n) is true under the stated assumption.



It follows that P{n) holds true for every n. Thus every diagonal sequence is arithmetic, as conjectured.

Now, 2010 will appear in a diagonal sequence precisely when 2009 is a muitiple of the step-size. From
the prime factorization 2009 = 7 x 7 X 41, we find that the divisors of 2009 are 1, 7, 41, 49, 287, and
2009. Hence 2010 appears in the triangle exactly six times. ‘

6. Let f:IR - R be such that f (x) exists and is continuous for all x. Suppose that for every a,b € R
with b > a we have

52 fx)dx =4 f()dx. (3)

Prove that there exists a constant € such that f(x) = Cx.

Selution. We begin by using the fundamental theorem of calculus. Fix a and differentiate both sides of
(1) with respect to b. We obtain:

f{2b) = 2f(b), forallb e R. %)
Next, we differentiate (4) twice to obtain:
f(2b) = = f(b), forall b € R. (5)

Next, from (5) we conclude that
ey e (BY S L (BN L (2
f. () = zf (2) - 4f (4) o 2”-f (zn)
Asn — oo, we have %f” (—;—:;) - 0,andso f"{(b) =0forall b € R.
Finally by integrating f''(b) = 0 twice, we must have f(b) = Cb + D for constants € and D. Recall
from (4) that f(2b) = 2f (D), and so

C(2b) + D =2(Ch + D), hence D = 0.
Therefore there exists C such that f(b) = Cb.



