

Submission Guidelines for <u>Programs EXEMPT from reporting due to Program Review or Accreditation Self-</u> study (assessment results from AY 2013-14)

Guidelines:

- 1) Submission deadline: September 26, 2014, early submissions are encouraged
- 2) Submit electronically to Yvonne Kirby (Director of OIRA) as an email attachment (ykirby@ccsu.edu)
- 3) Provide a SEPARATE REPORT for each academic program, all certificate and degree programs are required to be assessed per NEASC

Reminder: Assessment reporting is on a 5 year cycle, consisting of a full report in year one followed with interim reports for years 2, 3, 4, and 5. The assessment cycle is aligned with the Program Review Cycle such that the full assessment report is due the year prior to the year that the department will submit their program review report. Departments are not required to submit an assessment report for that program in the year that they prepare a program review report (see Program Review Policy and Assessment Calendar). For example, if your program is scheduled for program review in Spring 2017 or Fall 2017 then only a Summary assessment report will be due for that program in Fall 2017 (report covering AY 2016-17 activities); this is necessary to comply with BOR requirements. Departments that are accredited by an outside agency, and thus exempt from the Program Review Policy, should follow the same guidelines as outlined for departments preparing for their Program Review —in the year the self-study is written, they complete the Summary report. Please remember that an annual update to an accrediting agency is not analogous to a self-study.

Reports for programs writing their self-study: complete the Summary table for the program and any contribution to general education. URL to Assessment website resources: http://www.ccsu.edu/page.cfm?p=3454

Submit BOTH the SUMMARY report AND a final copy of the SELF-STUDY

<u>Summary:</u> The following questions are required by the Connecticut State Colleges and University Board of Regents, NEASC and the CCSU Academic Assessment Committee. These questions must be completed annually for all academic programs (all degree and certificate programs) as well as all departments offering courses in general education. Submit a separate table for each program and for each general education learning outcome the department teaches.

- You may use a bulleted list for each of the questions—full details should be included within the text of the full report when it is due, not in the Overview.

Program Summary

Department: Geological Sciences Report Preparer: Kristine Larsen

Program Name and Level: Earth Science (ESCI) BS and BSED

Program Assessment Question	Response
1) <u>URL</u> : Provide the URL where the	http://web.ccsu.edu/geolsci/esci-outcomes.shtml
learning outcomes (LO) can be	
viewed.	
2) Assessment Instruments: For	For more information, see attached
each LO, what is the source of the	
data/evidence, other than GPA, that	LO1: ESCI 221 "Unknown mineral" assignment [specifically mastery of background information and how to read
is used to assess the stated	scientific literature]
outcomes? (e.g., capstone course,	LO2a: ESCI 221 "Unknown mineral" assignment [specifically ability to perform tests on mineral to determine its
portfolio review and scoring rubric, licensure	properties, prepare sample for x-ray diffraction, and identify mineral]
examination, etc.)	LO2b: ESCI 221 "Unknown mineral" assignment [specifically using X-ray diffraction data to calculate d-spacings of the crystal lattice]
	LO3a: ESCI 278 Oral presentation to general public during observing sessions [BSED students only]; ESCI 360 Presentation of research grant proposal [BS students only]
	LO3b: ESCI 278 Term paper on a constellation [BSED students only]; ESCI 360 Written research grant proposal LO4: ESCI 278 Demonstrated ability to set up and operate telescopes for public observing sessions [BSED students]); ESCI 290 Use of field methods equipment [All other students; see attached for details]
	LO5: ESCI 221 "Unknown mineral" assignment [specifically ability to complete background research on mineral and present results in a final report; Only BSED students]; ESCI 360 Written research grant proposal [BS
	students].
3) <u>Interpretation</u> : Who interprets	Faculty within the department
the evidence? (e.g., faculty, Admn.	
assistant, etc.). If this differs by LO,	
provide information by LO.	

4) Results: Since the most recent	See attached
full report, state the conclusion(s)	
drawn, what evidence or supporting	
data led to the conclusion(s), and	
what changes have been made as a	
result of the conclusion(s).	
5) Strengths: What about your	See attached
assessment process is working well?	
6) Improvements: What about your	See attached
assessment process needs to	
improve? (a brief summary of changes to	
assessment plan should be reported here)	

<u>General Education Summary</u>: Here is the URL for the list of approved general education courses and LO/objectives: http://www.ccsu.edu/page.cfm?p=14893

NOTE: If department contributes to more than one LO, complete one summary for each LO

Department: Geological Sciences

General Education LO Assessed: SU1. Explain how scientists think, work, and evaluate the natural and social world.

Report Preparer: Kristine Larsen

General Education Question	Response
1) Courses: General Education course(s)	This LO was assessed in ESCI 209 Stellar and Galactic Astronomy
taught	
2) Assessment Instruments: What	Capstone lab assignment (see enclosed)
data/evidence, other than GPA, are used	
assess the stated CCSU General	
Education outcomes? (e.g., capstone course,	
portfolio review, licensure examination, etc.)	
3) <u>Interpretation</u> : Who interprets the	Faculty member teaching the course
evidence? (e.g., faculty, Admn. assistant, etc.).	
If this differs by XX course, provide	
information by XX course.	
4) Results: Since the most recent full	See attached
report, state the conclusion(s) drawn,	
what evidence or supporting data led to	
the conclusion(s), and what changes have	
been made as a result of the	
conclusion(s).	
5) Strengths: What about your	See attached
assessment process is working well?	
6) Improvements: What about your	See attached
assessment process needs to improve?	
(changes to assessment plan should be reported	

here)	
1 116161	

<u>General Education Summary</u>: Here is the URL for the list of approved general education courses and LO/objectives: http://www.ccsu.edu/page.cfm?p=14893

NOTE: If department contributes to more than one LO, complete one summary for each LO

Department: Geological Sciences

General Education LO Assessed: SU2. Use techniques such as controlled observation, experiment, mathematical analysis of data, and production and interpretation of graphical and tabular data presentation.

Report Preparer: Kristine Larsen

General Education Question	Response
1) Courses : General Education course(s)	This LO was assessed in ESCI 209 Stellar and Galactic Astronomy
taught	
2) Assessment Instruments: What	Two lab assignments (see attached)
data/evidence, other than GPA, are used	
assess the stated CCSU General	
Education outcomes? (e.g., capstone course, portfolio review, licensure examination, etc.)	
3) Interpretation: Who interprets the	Faculty member teaching the course
evidence? (e.g., faculty, Admn. assistant, etc.).	
If this differs by XX course, provide	
information by XX course.	
4) Results: Since the most recent full	See attached
report, state the conclusion(s) drawn,	
what evidence or supporting data led to	
the conclusion(s), and what changes have	
been made as a result of the	
conclusion(s).	
5) Strengths: What about your	See attached
assessment process is working well?	

6) Improvements: What about your	See attached
assessment process needs to improve?	
(changes to assessment plan should be reported	
here)	

<u>General Education Summary</u>: Here is the URL for the list of approved general education courses and LO/objectives: http://www.ccsu.edu/page.cfm?p=14893

NOTE: If department contributes to more than one LO, complete one summary for each LO

Department: Geological Sciences

General Education LO Assessed: SU3. Demonstrate knowledge and appreciation of the natural and social world.

Report Preparer: Kristine Larsen

General Education Question	Response
1) Courses: General Education course(s)	This LO was assessed in ESCI 131 Environmental Geoscience
taught	
2) Assessment Instruments: What	Term paper on a topic dealing with geology and the environment.
data/evidence, other than GPA, are used	
assess the stated CCSU General	
Education outcomes? (e.g., capstone course,	
portfolio review, licensure examination, etc.)	
3) Interpretation: Who interprets the	Faculty member teaching the course
evidence? (e.g., faculty, Admn. assistant, etc.).	
If this differs by XX course, provide	
information by XX course.	
4) Results: Since the most recent full	See attached
report, state the conclusion(s) drawn,	
what evidence or supporting data led to	
the conclusion(s), and what changes have	
been made as a result of the	
conclusion(s).	
5) Strengths: What about your	See attached
assessment process is working well?	
6) Improvements: What about your	See attached
assessment process needs to improve?	
(changes to assessment plan should be reported here)	

Program Review Narrative:

As explained in the 2012-2013 Earth Sciences Assessment Report, new Learning Outcomes for the majors (both BS and BSED) have been crafted:

By the time of graduation, students in both programs will demonstrate proficiency in the following areas:

- 1. Scientific literacy: Students will be able to identify, analyze, and apply earth science concepts, principles, laws, and theories.
- 2. Ability to do science: Students will be able to interpret, analyze, and apply the Scientific Method and other related inquiry related skills, as well as quantitative methods, in the earth science lab.
- 3. Communications: Students will be able to use oral and written communication to accurately and effectively convey earth science concepts.
- 4. Technology literacy: Students will be able to select and accurately use appropriate tools, equipment, and technologies in the earth science lab.
- 5. Research: Students will be able to locate, interpret, analyze, and/or conduct and present earth science research.

The following four courses were selected for the assessment of majors: ESCI 221 Mineralogy, ESCI 278 Observational Astronomy, ESCI 290 Field Methods, and ESCI 360 Research in Earth Sciences. ESCI 221 is required for all programs. ESCI 290 is required of all BS students, while ESCI 278 or 290 is required for all BSED students. ESCI 360 is required for all BS students. The following table summarizes the 2013-2014 assessment plan:

	ESCI 221	ESCI 278	ESCI 290	ESCI 360
Scientific literacy	"Unknown mineral"			
	assignment: Students will			
	learn about the			
	procedure of identifying			
	an unknown mineral,			
	learn about mineral			
	properties, and how to			
	read scientific literature			
	on minerals.			
Ability to do	"Unknown mineral"			
Ability to do				
science a)	assignment: Students will			

scientific method	be given an unknown mineral that they need to test the properties of, look up those properties and try to identify the mineral based on those properties. They will come up with a first guess at to the identification. They will then prepare a sample for X-Ray diffraction, and run their sample. They will then use published comparison charts to completely identify the mineral.			
Ability to do science b) math	"Unknown mineral" assignment: Using their XRD data, students will need to calculate d-spacings of the crystal lattice.			
Communication a) oral		Demonstrated ability to communicate astronomical knowledge clearly and factually correctly to the general public during capstone public observing sessions. (only BSED students who have not taken 290 or 360)	Each student will be assessed for oral communication through individual/group presentation on the assigned soil project. (only BSED students who have not taken 278 or 360)	Presentation of research grant proposal
Communication b) written		Written research paper on a particular constellation. (only	Students' growth in written communication over the semester	Written research grant proposal

Technology		BSED students who have not taken 290 or 360) Demonstrated ability to setup and operate portable and observatory telescopes to view a number of astronomical objects during a lab practicum (observing session). (only students who have not taken 290)	will be measured by comparison of their first two and final two field journal entries (only BSED students who have not taken 278 or 360) Technology capability of each student will be assessed based on ability: 1: to use Brunton compass for mapping geologic outcrops and features. 2: to use Geographic Information System (GIS) software for preparing pace and compass map 3: to collect, and analyze water quality using water testing equipment 4: to collect and determine soil properties using Munsell color charts and hydrometers 5: to use remote sensing	
			techniques for geologic mapping	
Research	Students will research their mineral using reference books and journal articles to make sure they have the correct identification.			Written research grant proposal

They will then write a 2-3		
page final report on their		
mineral.		
(only BS ED students who		
have not taken ESCI 360)		

While it is acknowledged that it will not be possible to guarantee that a particular student will never be double counted, that likelihood is much diminished in this new plan (as opposed to the previously implemented plan).

Results: The following data was collected during the 2013-2014 academic year. *Exceeded* expectations is defined as a grade of A or A- on the assignment, *met* expectations is defined as a grade of B+ through C- on the assignment, and *failed* to meet expectations refers to grades below C- and assignments not turned in by the student.

	ESCI 221	ESCI 278	ESCI 290	ESCI 360
Scientific literacy	"Unknown mineral"			
	assignment: Students will			
	learn about the			
	procedure of identifying			
	an unknown mineral,			
	learn about mineral			
	properties, and how to			
	read scientific literature			
	on minerals.			
	N = 19 BS/5 BSED			
	BS:			
	Exceeded: 73.6%			
	Met: 21.1			
	Failed: 5.3%			
	BSED:			
	Exceeded: 100%			
	Met: 0%			

	Failed: 0%		
Ability to do	"Unknown mineral"		
science a)	assignment: Students will		
scientific method	be given an unknown		
	mineral that they need to		
	test the properties of,		
	look up those properties		
	and try to identify the		
	mineral based on those		
	properties. They will		
	come up with a first guess		
	at to the identification.		
	They will then prepare a		
	sample for X-Ray		
	diffraction, and run their		
	sample. They will then		
	use published comparison		
	charts to completely		
	identify the mineral.		
	N=19 BS/5 BSED		
	BS:		
	Exceeded: 73.6%		
	Met: 21.1		
	Failed: 5.3%		
	BSED:		
	Exceeded: 100%		
	Met: 0%		
	Failed: 0%		
Ability to do	"Unknown mineral"		
science b) math	assignment: Using their		
	XRD data, students will		

	need to calculate d- spacings of the crystal lattice. N=19 BS/5 BSED BS: Exceeded: 94.7% Met: 5.3% Failed: 0% BSED: Exceeded: 100% Met: 0% Failed: 0%			
Communication a) oral		Demonstrated ability to communicate astronomical knowledge clearly and factually correctly to the general public during capstone public observing sessions. (only BSED students who have not taken 290 or 360) N = 2 BSED majors Exceeded: 50% Met: 50% Failed: 0%	Each student will be assessed for oral communication through individual/group presentation on the assigned soil project. (only BSED students who have not taken 278 or 360) Data not collected	Presentation of research grant proposal N = 8 BS majors Exceeded: 12.5% Met: 87.5% Failed: 0%
Communication b) written		Written research paper on a particular constellation. (only BSED students who have not taken 290 or 360)	Students' growth in written communication over the semester will be measured by comparison of their first two and final two field	Written research grant proposal N = 8 BS majors

		iournal antrios (anly BSED students	
	N = 2 BSED majors	journal entries (only BSED students who have not taken 278 or 360)	Exceeded: 50%
	N – 2 B3ED Majors	wild flave flot taken 278 of 300)	Met: 50%
	Exceeded: 100%	Data not collected	Failed: 0%
	Met: 0%	Data not conected	rullea. 0%
	Failed: 0%		
Ta ala sa al a su s		Taskaslassaskilikusfasak	
Technology	Demonstrated ability to set-	Technology capability of each	
	up and operate portable and	student will be assessed based on	
	observatory telescopes to	ability:	
	view a number of	N 0.00/2.0000	
	astronomical objects during a	N = 9 BS/ 3 BSED	
	lab practicum (observing		
	session). (only students who	1: to use Brunton compass for	
	have not taken 290)	mapping geologic outcrops and	
		features.	
	N = 2 BSED majors	BS:	
		Exceeded: 83%	
	Exceeded: 50%	Met: 16%	
	Met: 50%	Failed: 0%	
		BSED:	
		Exceeded: 92%	
		Met: 8%	
		Failed: 0%	
		2: to use Geographic Information	
		System (GIS) software for preparing	
		pace and compass map	
		BS:	
		Exceeded: 100%	
		Met: 0%	
		Failed: 0%	

1		
	BSED:	
	Exceeded: 100%	
	Met: 0%	
	Failed: 0%	
	3: to collect, and analyze water	
	quality using water testing	
	equipment	
	BS:	
	Exceeded: 78%	
	Met: 22%	
	Failed: 0%	
	BSED:	
	Exceeded: 100%	
	Met: 0%	
	Failed: 0%	
	4: to collect and determine soil	
	properties using Munsell color	
	charts and hydrometers	
	BS:	
	Exceeded: 100%	
	Met: 0%	
	Failed: 0%	
	BSED:	
	Exceeded: 100%	
	Met: 0%	
	Failed: 0%	
	Tunca. 070	
	5: to use remote sensing	
	techniques for geologic mapping	
1	recumulates for Regiogic mapping	

		BS: Exceeded: 56% Met: 44% Failed: 0% BSED: Exceeded: 100% Met: 0% Failed: 0%	
Research	Students will research their mineral using reference books and journal articles to make sure they have the correct identification. They will then write a 2-3 page final report on their mineral.	Tuncu. 070	Written research grant proposal N = 8 BS majors Exceeded: 50% Met: 50% Failed: 0%
	N= 5 BSED majors Exceeded: 100% Met: 0% Failed: 0% (only BS ED students who have not taken ESCI 360)		

As seen above, the vast majority of our majors are successful in meeting the Learning Outcomes of their major (as measured in these important courses). It should be noted that both the BS and BSED students are, in general, exceeding our expectations for them in these courses. At first glance it may appear that the BSED students have a higher level of "exceeds" as opposed to "meets" expectations as compared to the BS students, but given the small sample size of the BSED students no statistical significance can be demonstrated. It must also be acknowledged that data was not collected on two of the assessments, the oral presentation in ESCI 290 and the written assessment in ESCI 290. In the case of

the oral presentation, it was noted by the faculty members that since it was a group project it was not possible to give students meaningful individual grades. In the case of the journal entries, it was found that there was not a sufficient amount of text to make a meaningful assessment of student gains in scientific writing over the course of the semester. In both cases, new assessment tools will need to be developed. Given that the lowest overall scores for BS students appear under LO3a (Oral communication), it is important to effectively assess BSED student mastery of this LO as well.

In addition, after discussions with the Chair of the university Academic Assessment Committee it was decided that targeted assessment of students in required 100 level majors courses would provide a useful baseline against which to measure student achievement in upper level course. This poses some difficulty, because both BS and BSED majors have the choice as to whether to take ESCI 121/125 or 131/135. It was decided to use both courses (albeit for different LO) in order to capture some LO for students in each course. The revised assessment plan (currently being utilized in the 2014-2015 academic year) appears below:

Outcome MAJORS	100 level BS	100 level BSED	Upper level BS	Upper level BSED
(BS and BSED)				
Scientific literacy	ESCI 145 Earth and Life	ESCI 145 Earth and Life	ESCI 221 Mineralogy:	ESCI 221 Mineralogy:
	History Lab: fossil ID	History Lab: fossil ID exam	"Unknown mineral"	"Unknown mineral"
	exam		assignment: Students will	assignment: Students will
			learn about the procedure of	learn about the procedure of
			identifying an unknown	identifying an unknown
			mineral, learn about mineral	mineral, learn about mineral
			properties, and how to read	properties, and how to read
			scientific literature on	scientific literature on
			minerals.	minerals
Ability to do	ESCI 145 Earth and Life	ESCI 145 Earth and Life	ESCI 221 Mineralogy:	ESCI 221 Mineralogy:
science: Scientific	History Lab: Final project	History Lab: Final project	"Unknown mineral"	"Unknown mineral"
Method			assignment: Students will be	assignment: Students will be
			given an unknown mineral	given an unknown mineral
			that they need to test the	that they need to test the
			properties of, look up those	properties of, look up those
			properties and try to identify	properties and try to identify
			the mineral based on those	the mineral based on those

Ability to do science: Math	ESCI 125 The Dynamic Earth Lab: Hydrologic Budget exercise	ESCI 125 The Dynamic Earth Lab: Hydrologic Budget exercise	properties. They will come up with a first guess at to the identification. They will then prepare a sample for X-Ray diffraction, and run their sample. They will then use published comparison charts to completely identify the mineral. ESCI 221 Mineralogy: "Unknown mineral" assignment: Using their XRD data, students will need to calculate d-spacings of the crystal lattice.	properties. They will come up with a first guess at to the identification. They will then prepare a sample for X-Ray diffraction, and run their sample. They will then use published comparison charts to completely identify the mineral. ESCI 221 Mineralogy: "Unknown mineral" assignment: Using their XRD data, students will need to calculate d-spacings of the crystal lattice.
Oral communication	TBD	TBD	ESCI 360 Research in Earth Sciences: Presentation of research grant proposal	ESCI 278 Observational Astronomy: Demonstrated ability to communicate astronomical knowledge clearly and factually correctly to the general public during capstone public observing sessions. AND ESCI 290 Field Methods: Oral assignment (TBD)
Written communication	ESCI 125 The Dynamic Earth Lab: midterm project	ESCI 125 The Dynamic Earth Lab: midterm project	ESCI 360 Research in Earth Sciences: Written research grant proposal	ESCI 278 Observational Astronomy: Written research paper on a particular constellation.

				AND ESCI 290 Field Methods:
				Written assignment (TBD)
Technology literacy	ESCI 135 Environmental	ESCI 135 Environmental	ESCI 290 Field Methods:	ESCI 278 Observational
(tools both	Geoscience Lab:	Geoscience Lab: Laboratory	Technology capability of each	Astronomy: Demonstrated
electronic and	Laboratory exercise the	exercise the use of pH meter	student will be assessed based	ability to set-up and operate
manual)	use of pH meter and	and potable photometer for	on ability:	portable and observatory
	potable photometer for	water chemistry analysis.	1: to use Brunton compass for	telescopes to view a number
	water chemistry analysis.		mapping geologic outcrops	of astronomical objects during
			and features.	a lab practicum (observing
			2: to use Geographic	session).
			Information System (GIS)	
			software for preparing pace	AND
			and compass map	
			3: to collect, and analyze	ESCI 290 Field Methods:
			water quality using water	Technology capability of each
			testing equipment	student will be assessed based
			4: to collect and determine	on ability:
			soil properties using Munsell	1: to use Brunton compass for
			color charts and hydrometers	mapping geologic outcrops
			5: to use remote sensing	and features.
			techniques for geologic	2: to use Geographic
			mapping	Information System (GIS) software for preparing pace
				and compass map
				3: to collect, and analyze
				water quality using water
				testing equipment
				4: to collect and determine
				soil properties using Munsell
				color charts and hydrometers
				5: to use remote sensing
				techniques for geologic

				mapping
Research	ESCI 121 The Dynamic	ESCI 121 The Dynamic Earth:	ESCI 360 Research in Earth	ESCI 221: Students will
	Earth: Geology of State	Geology of State Parks	Sciences: Written research	research their mineral using
	Parks Assignment	Assignment	grant proposal	reference books and journal
				articles to make sure they
				have the correct
				identification. They will then
				write a 2-3 page final report
				on their mineral.

The upper division back bone of the previous assessment plan is still in place, but acknowledges that changes have to be made in the assessments conducted in ESCI 290 Field Methods. These are currently listed as TBD, as they were not developed in time for the Fall 2014 offering of the course. The course will be taught next in the Fall 2015 semester, and assessments will be in place at that time. There is a new set of 100-level assessments, complete except for the Oral Communication LO. Currently the required geology lecture courses are taught in sections of 40-60 students, which makes individual, graded oral presentations difficult. Faculty will continue to discuss possible oral assignments (or oral components of assignments) that could be integrated into the much smaller laboratory sections.

Strengths: The program (as revised) uses a variety of lecture and laboratory courses to assess student learning, although it is still one course/assessment took per LO (with the exception of BSED students who have a choice as to whether to take ESCI 278 or 290).

Improvements: As noted above, the 2013-2014 assessment plan needed to be further modified, and the above listed new assessment plan is currently being implemented in the 2014-2015 academic year. There are also acknowledged holes in that new plan, some of which are being addressed through a CCSU Curriculum Development Grant for revisions to ESCI 290. As previously noted, BS majors appear to have the greatest difficulty with LO3a (Oral communication). Therefore, increased emphasis should be placed on integrating oral communication within a number of the major- level courses.

General Education Narrative:

As noted in previous years' reports, the general education assessment structure used in the department had become unwieldy, and since each LO was assessed using several exercises from several different courses, there was a wide variety of results within each LO. While this did produce useful information on particular courses, it was not particularly useful as an aggregate seeking to assess a particular LO as whole. At the time of the submission of the 2013-2014 assessment report, a new assessment plan for general education courses had not yet been agreed upon. Over the summer of 2014 such a streamlined plan was set into place, with a single assignment in a single course selected for the collection of data for each general education learning outcome. In the case of SU2, it was found that it was more meaningful to divide this LO into two pieces (controlled experiment/observation vs. mathematical analysis and interpretation of graphs and tables), with different assignments used to assess each.

Results:

The resulting assessment structure and resulting data is listed below. *Exceeded* expectations is defined as a grade of A or A- on the assignment, *met* expectations is defined as a grade of B+ through C- on the assignment, and *failed* to meet expectations refers to grades below C- and assignments not turned in by the student.

LO	Assessment	Data
SU1. Explain how scientists think, work, and	ESCI 209 Stellar Astronomy: Capstone lab	N = 27
evaluate the natural and social world	assignment	
		Exceeded: 51.9%
		Met: 29.6:
		Failed: 18.5%
SU2a. Use techniques such as controlled	ESCI 209 Stellar Astronomy: Spectra Lab	N = 28
observation, experiment	Exercise	
		Exceeded: 78.6%
		Met: 17.8%
		Failed: 3.6%
SU2b. Use techniques such as mathematical	ESCI 209 Stellar Astronomy: Blackbody	N = 28
analysis of data, and production and	Radiation and Wien's Law Lab Exercise	
interpretation of graphical and tabular data		Exceeded: 60.7%
presentation.		Met: 35.7%
		Failed: 3.6%

SU3. Demonstrate knowledge and appreciation	ESCI 131 Environmental Geology: Geology and	N = 57
of the natural and social world.	the Environment term paper	
		Exceeded: 86%
		Met: 14%
		Failed: 0%

The unusually high percentage of students who "failed" the ESCI 209 capstone was due to 5 students electing not to hand in the assignment. Since it is only worth 5% of the course grade, some students may not have taken the assignment seriously. In the Spring 2015 semester the instructor will endeavor to better impress upon the students the importance of completing this assignment.

Strengths: While the percentage of students who "exceeded" for both the ESCI 209 labs was very high, the percentage was significantly lower for SU2b, which involved mathematical analysis. This was to be expected, and speaks to the relative consistency of this new general education assessment plan. Further bolstering this claim is the fact that the ESI 209 capstone is also heavily mathematical and relies on analysis of data tables, so that the lower percentage of students who scored "exceeded" there is also a consistent result.

Improvements: The instructor of ESCI 131 was not satisfied with the level of depth of the assignment, which may explain the unusually high "exceeded" percentage among students. It was decided to change the assessment of this LO to a similar essay assignment in ESCI 102 Earth and the Human Environment, a course that solely serves nonmajors. This new general education assessment plan for the department will be reevaluated in the 2014-15 Assessment Peport and any necessary changes made.