CCSU Regional Math Competition, 2016

$\mathbf{Part}~\mathbf{I}$

Each problem is worth ten points. Please be sure to use separate pages to write your solution for every problem.

Problem 1. For each real number $t \in [-1, 1]$ let P_t be the parabola in the xy-plane that has axis parallel to the y-axis, passes through the points (0, 0) and (4, t), and has a tangent line with a slope t - 1 at the point (4, t). Find the smallest possible y-coordinate for the vertex of P_t .

Problem 2. Inside a square of side 2 there are 7 polygons each of area 1. Show that there are 2 polygons that overlap over a region of area at least $\frac{1}{7}$.

Problem 3. Consider two matrices A $(m \times n)$ and B $(n \times m)$ with real entries, such that $m \ge n \ge 2$. Assume there exist an integer $k \ge 1$ and real numbers $a_0, a_1, ..., a_k$ such that

$$a_k(AB)^k + a_{k-1}(AB)^{k-1} + \dots + a_2(AB)^2 + a_1(AB) + a_0I_m = O_m,$$

$$a_k(BA)^k + a_{k-1}(BA)^{k-1} + \dots + a_2(BA)^2 + a_1(BA) + a_0I_n \neq O_n,$$

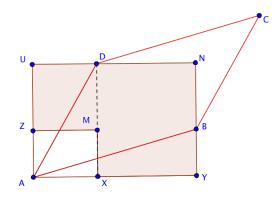
where I_m , I_n are the identity matrices and O_m , O_n are the zero matrices of the corresponding sizes. Prove that $a_0 = 0$.

CCSU Regional Math Competition, 2016

Part II

Each problem is worth ten points. Please be sure to use separate pages to write your solution for every problem.

Problem 4. Show that the area of the region MXYNUZ equals the area of the parallelogram ABCD where the lines \overrightarrow{AY} , \overrightarrow{BZ} , \overrightarrow{NU} are perpendicular to the line \overrightarrow{AU} and the lines \overrightarrow{DX} , \overrightarrow{NY} are perpendicular to the line \overrightarrow{AY} . The segments \overrightarrow{DX} , \overrightarrow{BZ} meet at the point M and their endpoints are on the sides of the polygon AYNU as in the figure.



Problem 5. Compute the integral

$$\int_0^{\pi/4} \ln(1+\tan x) dx.$$

Problem 6. Let f be the function defined recursively by f(0) = 1 and f(n) = 1 + nf(n-1) for each positive integer n. Find the smallest prime divisor of $f(4 \times 30 + 2016)$.