
CCSU Regional Math Competition, 2011

SOLUTIONS

1. A ladder of length L meters is placed vertically against a wall. At a certain moment
the base of the ladder begins sliding away from the wall at L meters per minute, continuing
until the ladder lies horizontally on the ground. At the same initial moment a mouse at the
base of the ladder begins crawling up the ladder, also at L meters per minute. (Thus the
mouse begins and ends at the same location at the base of the wall.) At what point in time
does the mouse reach its greatest distance from its starting point?

Solution: Using the obvious x and y coordinates for the horizontal and vertical compo-
nents, we see that at time t the base of the ladder is at position tL on the x-axis, the top
end of the ladder is at position L

√
1− t2 on the y-axis, and the fraction of the ladder that

the mouse has traversed is tL/L = t, leaving 1 − t as the fraction not yet covered. Hence
the coordinates of the mouse are x = (1− t)tL and y = tL

√
1− t2.

Instead of maximizing the distance D, it is easier to maximize D2. This is justified since,
for D ≥ 0, D2 is a strictly increasing function of D. We have

D2 = x2 + y2 = 2L2(t2 − t3),

and differentiating gives
d

dt
D2 = 2L2t(2− 3t),

so there are two critical points, t = 0 and t = 2/3. A maximum for D2 (and hence for
D) must occur over the closed interval 0 ≤ t ≤ 1, and it clearly does not occur at either
endpoint. This leaves us with t = 2/3, or 40 seconds.

2. Find every positive real number a for which the curves y = ln x and y = xa have
exactly one point of intersection, or show that no such a exists.

Solution: There is just one such number, a = 1/e.
For convenience let f(x) = ln(x) and g(x) = xa. Clearly g(x) > f(x) at the left extreme

(say 0 < x ≤ 1) and again at the right extreme (since g/f →∞ as x →∞, by an application
of l’Hopital’s rule). It follows that the single-intersection situation can occur only at a point
where the two curves are tangent, since if they crossed transversely they would have to cross
again to satisfy g > f at both ends.

Setting f ′ = g′ and solving, we find x = (1/a)1/a. This shows that for any given a there
is exactly one point where both curves have the same slope. Hence the tangent intersection
will occur precisely when f and g are equal at this special x value. Solving

f
(
(1/a)1/a

)
= g

(
(1/a)1/a

)
yields a = 1/e, so the tangent intersection occurs only in this one case, and the intersection
occurs at x = ee.

Finally, we must show that with a = 1/e the curves do not intersect at any additional
point(s). Suppose to the contrary that there is a second point of intersection, say x = w.
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Then, by the Mean Value Theorem, there is a point strictly between ee and w where both
curves have the same derivative. But this is impossible: as shown earlier, there is just one
point where the derivatives are equal, and this is x = ee.

3. In the following table we give names to the six permutations of the three-letter string
ABC with subscripts identifying even or odd permutations.

even odd
ae = ABC ao = CBA
be = BCA bo = ACB
ce = CAB co = BAC

With the above three-letter strings, or respectively, with their names we construct two infinite
strings S and s using the following recursive algorithm. We start S with ABC and s with
ae and then, at each step, we append to S a three-letter string and to s the name of that
string in such a way that (1) in s the names of even and odd permutations alternate and
(2) the sequence of lower-case letters in s, ignoring the subscripts, is exactly the same as
the sequence of the corresponding upper-case letters in S. According to this algorithm the
strings s and S begin as follows:

s = ae bo ce ao ce bo ce ao . . .

S =
︷ ︸︸ ︷
A B C

︷ ︸︸ ︷
A C B

︷ ︸︸ ︷
C A B

︷ ︸︸ ︷
C B A

︷ ︸︸ ︷
C A B

︷ ︸︸ ︷
A C B

︷ ︸︸ ︷
C A B

︷ ︸︸ ︷
C B A . . .

Show that in the string S there is no substring (sequence of consecutive letters of S) of ANY
positive length which is immediately followed by the exact same substring.

Solution: For convenience, a “triple” will mean a three-letter substring of S which
begins in S at a position of the form 3n + 1. A triple will of necessity be one of our named
three-letter strings.

If there are any repeats of any length, there must be a first one. Let f and g be the first
such pair of substring of S of any length, where f = g, as strings, and g immediately follows
f in S. If there are more than one pair beginning at the same position in S, let (f, g) be the
shortest such pair and suppose the length of f is N .

Claim 1: N 6= 1.
If N = 1, then fg = AA, fg = BB, or fg = CC. This cannot happen within a

permutation of ABC, so the repeated letter must be the first and last letter of two adjacent
triples. But since the odd and even permutations are alternating, we see, by inspection of
the table above, that this can only happen if both triples are named by the same lower case
letter from {a, b, c}. But that means that there was a repeat of the form AA, BB or CC at
an earlier point in S, which is a contradiction.

Claim 2: N 6= 2.
If f is of length 2, then fg is a substring of 4 letters, which must span 2 adjacent triples,

with the split between both triples being either 3 and 1, or 2 and 2. In the first case there
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would be two identical letters in one of the triples, which is impossible. The second case
would require that an even triple is followed by an even triple, or an odd by an odd (e. g. if
f = AB then the adjacent triples would be CAB followed by ABC, and both are even).

Claim 3: N 6= 3K for any K ≥ 1.
If f is of length 3K and if it is aligned with the triples, then it follows from our con-

struction that there is a repeat of length K in s and therefore there must have been an
earlier repeat of length K in S, contradicting our assumption that the pair (f, g) is the first
repeat. On the other hand, if f begins in position 2 of a triple, then the first letter of that
triple is uniquely determined and must be identical to the last letter of f . It follows that
the string of length 3K beginning one position earlier than f also immediately follows itself,
contradicting our assumption that (f, g) was first. If f begins in position 3 of a triple, then
the letter immediately to the right of g is uniquely determined and must be identical to
the first letter of g, again giving us a repeat of length 3K which is aligned with our triples,
leading to an earlier repeat of length K. The beginning of that repeat of length K could
conceivably coincide with the beginning of f , but it would contradict our assumption that
f had the shortest length of any repeats beginning in that position.

Claim 4: N 6= 3K + 1 and N 6= 3K + 2 for any K ≥ 1.
Let F and G be the first three letters of f and g, but not necessarily in that order, and

note that F = G.
First, assume that F or G is aligned with one of the triples in S. WLOG we can assume

that the aligned string is F . Thus F (and therefore G) contains 3 distinct letters; hence
WLOG we can assume that F = ABC = G. Since N 6= 3K, G will not be aligned with any
of the triples. Then G will span two triples in one of the following two ways: ( AB)(C ),
or ( A)(BC ). The different alignments of the two identical substrings f and g completely
determines them by proceeding to the right, alternating between the two substrings, and
using the requirements imposed by our alternating even and odd permutations of ABC.

For the first case, where the beginning of the unaligned substring looks like ( AB)(C ),
we find that C must always be in first position of each triple in the unaligned substring, and
in the third position of each triple in the aligned substring. The other two letters alternate
between AB and BA in the remaining positions of each triple. (To verify that take the
repeating string that begins with ( AB)(C ). Since ( AB) must be a permutation we
have ( AB) = (CAB) = ae. Therefore (C ) must be an odd permutation that begins
with C; hence (C ) = (CBA) = ao. Thus ( AB)(C ) = (CAB)(CBA). Hence the other
repeating string with length N must begin with (ABC)(BA ) and since (BA ) must be a
permutation we have that the second repeating string begins with (ABC)(BAC). Thus the
first repeating string with length N must begin with ( AB)(CBA)(C ) and so on.)

If the aligned substring comes first, this would force an A or B into the last position of the
substring. This conflicts with the beginning of the repeat, which looks like ( AB)(C ) =
(CAB)(CBA).

If, on the other hand, the unaligned substring comes first, it must end with either (CAB),
or (CBA). In the first case, the beginning 3 letters of the repeat (ABC) would have the
same parity. In the latter case, the last letter, and the first letter of the repeating substring
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would constitute a repeat of length 1.
For the second case, where the beginning of the unaligned substring looks like ( A)(BC ),

we find that A must always be in third position of each triple in the unaligned substring, and
in the first position of each triple in the aligned substring. The other two letters alternate
between BC and CB in the remaining positions of each permutation. (To verify that take
the repeating string that begins with ( A)(BC ). Since (BC ) must be a permutation we
have (BC ) = (BCA) = be. Therefore ( A) must be an odd permutation that ends with A;
hence ( A) = (CBA) = ao. Thus ( A)(BC ) = (CBA)(BCA). Hence the other repeat-
ing string with length N must begin with (ABC)(A ) and since (ABC) = ae is an even per-
mutation (A ) must be an odd permutation that begins with A; thus (A ) = (ACB) = bo.
Therefore the second repeating string begins with (ABC)(ACB). Hence the first repeating
string with length N must begin with ( A)(BCA)(CB ) and so on.)

If the unaligned substring comes first, this would force an A into the last position of
that substring and then the last letter and the first letter of the repeating substrings would
constitute a repeat of length 1.

If, on the other hand, the aligned substring comes first, then that string must end in
the triple ( A) where the second repeating string begins. Therefore the first letter of that
triple must be an A and at the same time we know that this triple is (CBA)-contradiction.

Now suppose that both of the repeating substrings in S are misaligned with the triples at
the beginning end. Since the length of each substring is either N = 3K + 1 or N = 3K + 2,
one of them must start at a position of the form 3M + 2, and the other at a position of
the form 3L. This means that the right end of one of the repeating substrings is aligned
with a triple. If the end of the first repeating substring is aligned with a triple, then the
beginning of the second string will be also aligned, which is a contradiction. Therefore the
end of the second substring is always aligned with a triple. Then the mirror image of our
previous argument again shows that N = 3K + 1 or N = 3K + 2 is ruled out.

4. Let q(x) = ax + b be a non-zero polynomial and let p(x) be a polynomial of degree n.

Find all functions f(x) = p(x)
q(x)

such that f inverse equals f , that is, such that f−1 = f .

Solution: f(x) = x or f(x) = −bx+d
ax+b

with b and d not simultaneously equal zero.
Proof: It is clear that the condition f−1 = f is equivalent to the condition f(f(x)) = x

for all x in the domain of f .

Claim: n ≤ 1.
Proof of the claim: If a = 0 then f is a polynomial of degree n, and since the degree of

f ◦ f is n2 and f(f(x)) = x; we conclude that n = 1. If a 6= 0 and f is not a polynomial,
then f has a vertical asymptote, and since the graph of f in the plane x − y is symmetric
with respect to the line y = x, then f must have a horizontal asymptote; therefore n ≤ 1.

By the previous claim we have that f(x) = cx+d
ax+b

. A direct computation shows that

f(f(x)) =
c(cx + d) + d(ax + b)

a(cx + d) + b(ax + b)
=

(c2 + ad)x + (cd + bd)

(ac + ab)x + (ad + b2)
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Since f(f(x)) = x, then (c2 + ad)x + (cd + bd) = x((ac + ab)x + (ad + b2)) or equivalently,

a(c + b)x2 + (b2 − c2)x− d(c + b) = (c + b)(ax2 + (b− c)x− d) = 0.

Therefore, either c = −b and we get that f(x) = −bx+d
ax+b

or

a = 0, b = c and d = 0

and we get f(x) = x.

5. Consider quadruples (A, B, C,D) of positive integers having arithmetic mean 2011
and satisfying A < B < C < D. Determine the number of distinct quadruples for which the
maximum possible value of gcd(A, C) is attained.

Solution: Set G = gcd(A, C). Then A = pG and C = qG for positive integers p and
q, with p < q. Hence B = pG + m and D = qG + n for positive integers m and n. The
constraint on the mean implies that

A + B + C + D = 2(p + q)G + (m + n) = 8044.

In order for G to be large, p + q and m + n must be small. The smallest possible value
for p + q is 3, and in this case the smallest possible value for m + n is 4, since 8044 ≡ 4
(mod 6). This corresponds to G = 1340. The next smallest possible value for p + q is 4,
but this leads to G ≤ 1005 regardless of the value of m + n. Hence the maximum value
for G is 1340, with p = 1, q = 2, and m + n = 4. This gives three options: m = 1, 2, 3
and n = 3, 2, 1, respectively. Therefore exactly three quadruples give the maximum G:
(1340, 1341, 2680, 2683), (1340, 1342, 2680, 2682), and (1340, 1343, 2680, 2681).

6. Let f(x) be a positive and differentiable function on (0,∞), and suppose that

limx→∞
f ′(x)
f(x)

= L, where 0 < L ≤ ∞. Define f0(x) = x and fn(x) = f(fn−1(x)), for

every integer n ≥ 1. Find limx→∞
(fn(x))a

fn−1(x)
, where a > 0 is a real number and n ≥ 1.

Solution: We shall show that limx→∞
(fn(x))a

fn−1(x)
= ∞ for every a > 1 and every n ≥ 1.

Since limx→∞
f ′(x)
f(x)

= L > 0, and f(x) > 0 for every x > 0, there exists x0 > 0 such

that f ′(x)
f(x)

> 0 for every x > x0; hence f ′(x) > 0 for every x > x0. Therefore f(x), for

x > x0, is a strictly increasing function. If f(x) were bounded above then there would
have existed a positive number M such that limx→∞ f(x) = M , hence limx→∞ f ′(x) = 0,

and therefore limx→∞
f ′(x)
f(x)

= 0. Thus limx→∞ f(x) = ∞ and therefore limx→∞ fn(x) = ∞
for every n ≥ 1. Since a > 0, we also have limx→∞(fn(x))a = ∞. Therefore to find

limx→∞
(fn(x))a

fn−1(x)
we can use the l’Hopital’s rule. For simplicity we let u = fn−1(x). Then

limx→∞
(fn(x))a

fn−1(x)
= limu→∞

(f(u))a

u
= limu→∞

a(f(u))a−1f ′(u)
1

= limu→∞
a(f(u))af ′(u)

f(u)
= ∞ · L = ∞.
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