CCSU Regional Math Competition, 2016
SOLUTIONS I

Problem 1. For each real number ¢ € [—1, 1] let P; be the parabola in the
xy-plane that has axis parallel to the y-axis, passes through the points (0, 0)
and (4,t), and has a tangent line with a slope ¢t — 1 at the point (4,¢). Find
the smallest possible y-coordinate for the vertex of P,.

Solution. For t € [—1,1], let p;(z) = ax? + bx + ¢ be the quadratic function
whose graph is the parabola P,. Since p,(0) = 0 and p;(4) = ¢, we have
¢ =0 and 16a + 4b = t. From p/;(z) = 2ax + b and p's(4) = t — 1, we have
8a+0b=t—1. Hence a = ;5(3t —4) and b = 3(—t + 2). Thus,
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The y-coordinate of the vertex of P, will be given by the formula

—b\ 4t — 8 _(t—2)2

Pi\2a ) " \3t—4) = a—3t
In order to find the lowest possible y-coordinate of the vertex of P,, we need
2
to find the minimum value of the function f(t) = (Z__?t , when t € [—1,1].

The derivative of f(t) with respect to ¢ is given by the formula

o 3248t —4

and hence, f'(t) = 0 when t = 2 or t = %. Since 2 ¢ [—1,1] and

8

we conclude that the lowest possible y-coordinate of the vertex of P is §

Problem 2. Inside a square of side 2 there are 7 polygons each of area 1.
Show that there are 2 polygons that overlap over a region of area at least %



Solution. Let P, P,, ..., P; be the 7 polygons and denote by |R| the area
of the region R. Assume that any 2 of them share an area < 1/7. Then

|IPLUP,UPs| = |PLUPy)| + |P3| — [(PLUP) N P3| >13/7T+1—2/7=18/7.

Following the pattern, the union of all polygons will cover an area more than

18/7+1—3/7 = 22/1,
22/7+1—4/7 = 25/7,
25/7+1—5/7=27/T,
27/7+1—6/7=28/7 = 4.

But the area of the square is 4 and the polygons cannot cover an area more
than 4. Hence, our assumption is false and the opposite statement is true.

Problem 3. Consider two matrices A (m x n) and B (n x m) with real
entries, such that m > n > 2. Assume there exist an integer £ > 1 and real
numbers ag, a1, ..., a; such that

ak(AB)k + CLk;_l(AB)k_l +--+ a2(AB)2 + GI(AB) + aOIm = Omu

ak.(BA)k + ak_l(BA)k_l + -+ CLQ(BA)Q + al(BA) + (lo]n 7é On,

where [,,,, I,, are the identity matrices and O,,, O, are the zero matrices of
the corresponding sizes. Prove that aq = 0.

Solution I. Assume ag # 0. Divide the first identity by ay and factor AB:

AB (_%(AB)’“ ~ S aBy? - - 2aB) - ﬂ[m) = In.
Qo Qo ao o

It follows from this that AB is invertible, and since it is an m X m matrix,

it has to have rank m. So rank(AB) = m > n. However, using the rank

inequality, we know that m = rank(AB) < min{rank(A),rank(B)} < n, so

we have that m = n and A, B, AB, and BA are all invertible square matrices.
After multiplying the identity

ar(AB)* + aj_(AB)* ' + ... 4+ ay(AB)? + a1 (AB) + agI,, = O,



to the left with B and to the right with A we obtain
ar(BA* + a1 (BAF + - 4 ag(BA)? + a1 (BA)? + ag(BA) = O,.
Finally, after multiplying the whole expression by (BA)~! we obtain that
ar(BA 4+ ap_1(BA)"™ + - 4+ ay(BA)? + ay(BA) + aol, = O,
which contradicts the hypothesis. Therefore ag = 0.

Solution II. Observe that (AB)? = A(BA)’~'B for any j > 1 and thus, the
first equation gives

A(ap(BA* ' + a1 (BA)? + -+ +a1l,) B=—aol,

and if we denote ay(BA) 1 4+a,_ (BA)*2+- - -+a11, by L, the two equations
can be written as

ALB = —agl,,, LBA+# —aol,.

If ag # 0, it follows that A is the matrix of a surjective linear map from R”"
onto R™ and since m > n, we deduce that m = n and A is invertible. In
particular, A commutes with LB and thus, the second condition contradicts
the first one. This proves that ag = 0.



CCSU Regional Math Competition, 2016
SOLUTIONS II

Problem 4. Show that the area of the regigE)MXYNUZ equals the area
of the parallelogram ABC' D where the lines AY', ﬁ, U are perpendicular
to the line fﬁ] and the lines W , W are perpendicular to the line le? . The
segments DX, BZ meet at the point M and their endpoints are on the sides
of the polygon AY NU as in the figure.

/
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Solution I. The components of the vector AB are AY, AZ and the compo-
nents of the vector AD are AX, AU. Hence, the area of the parallelogram
ABCD is the determinant

dot (AY AX

A7 AU) =AY x AU — AX x AZ.

The area of the region M XY NUZ is the difference between areas of two
rectangles: AYNU and AXMZ, and this difference agrees with the deter-

minant above, proving the statement.

Solution II. If R is a region in the plane, then by |R| we will denote its
area. Since two triangles with the same base and height have the same area,
|ABY| = |AMY| and |ADU| = |AMU|. Since each diagonal splits the
rectangle into two triangles of the same area, we conclude that



IMXYNUZ| =2|MUZ| +2|MXY|+2|BND|,
IMXAZ| = |MAX|+ |MAZ|,
|BAY| = |MAX|+ |MXY]|,
|ADU| = |MAZ| + |MUZ|,
|ABD| = |[AYNU| — |ADU| — |BAY| — |BND|.

Combining these equations we conclude that
|ABD| = |AYNU| - |MAZ| — |MUZ| — |MAX| — |MXY|— |BND|
=|AYNU| - | MXAZ| — %\MXYNUZ] = %U\/[XYNUZ].
Since |ABCD| = 2|ABD]|, our claim is proved.

Solution III. Denote the intersection point between the segments M X and
AB by S and the intersection point between the line jﬁ and the perpendic-
ular from D to j@ by P (see the figure below). Let also the line through

S parallel to W intersect AZ at A’ and YB at B’. Notice that AAXS
and ABMS are similar and therefore AX x MS = XS x MB and since
AX = 7ZM and MB = XY, we have MZ x MS = XS x XY. Therefore
ZMSA and XY B'S have the same areas, thus M XY NUZ and A'B'NU
have the same areas. Now notice that AAY B and ADPS are similar and
therefore AY x DS = AB x DP. Since AY = A’B’, we have that A’B'ND
and ABCD have the same areas. The proof is completed.




Solution IV. Solution without words.
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/
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Problem 5. Compute the integral

w/4
/ In(1 + tan x)dx.
0

Solution. Using the identities

sinx + cosx
l+tang = ———
CcosS T

sinx + cosx
In| ——

= In(sinx + cosx) — Incos z,
Cos ¥

sinz 4 cosz = V2sin <%+I),

we separate the given integral into three parts as follows:
w/4
/ In(1 + tan z)dx
0

w/4 m/4
= / In(sinz + cos z)dx — / Incosz dx
0 0

w/4 T w/4
:/ In <\/§sin<z+x>>dm—/ Incosz dx
0 0
w/4 w/4 /4
:/0 ln\/idxqt/o ln<sin<£+x>>da:—/0 Incosz dx

= minv?2 +/7T/41n (sin (Z +a:>> dr — /W/4lncosas dx.
0 0

4



2 —t shows that the last two integrals are equal

4
and therefore they cancel out. Thus, the answer is % = %.

The change of variables x =

Problem 6. Let f be the function defined recursively by f(0) = 1 and
fn) =1+ nf(n—1) for each positive integer n. Find the smallest prime
divisor of f(4 x 30 + 2016).

Solution. For any prime number p and nonnegative integer k£ we can
prove by induction on r that

Flkp+r) = f(r) mod p
for any nonnegative integer r. The base case r = 0 follows from
f(kp) =1+ kpf(kp—1)=1 mod p
and f(0) = 1. The induction step “r implies r + 1”7 follows from
flkp+r+1)=1+(kp+r+1)f(kp+r)=1+(r+1)f(r) modp

and f(r+1) =1+ (r+1)f(r). Observe that p could be also any positive
integer. Since N =4 x 30 + 2016 = 2136 satisfies the following congruences

N =0 mod 2, N =0 mod 3, N =1 mod 5,
N=1 mod?7, N =2 mod 11, N =4 mod 13,

and f(0) =1, f(1) =2, f(2) =5, and f(4) =65 =0 mod 13, we conclude
that f(IV) satisfies the following congruences

f(N)=1 mod2,  f(N)=1 mod 3, f(N)=2 mod 5,
f(N)=2 mod7, f(N)=5 mod1l, f(N)=0 mod 13.

Therefore the smallest prime divisor of f(2136) is 13.



