
CCSU Regional Math Competition, 2016

SOLUTIONS I

Problem 1. For each real number t ∈ [−1, 1] let Pt be the parabola in the
xy-plane that has axis parallel to the y-axis, passes through the points (0, 0)
and (4, t), and has a tangent line with a slope t− 1 at the point (4, t). Find
the smallest possible y-coordinate for the vertex of Pt.

Solution. For t ∈ [−1, 1], let pt(x) = ax2 + bx+ c be the quadratic function
whose graph is the parabola Pt. Since pt(0) = 0 and pt(4) = t, we have
c = 0 and 16a + 4b = t. From p′t(x) = 2ax + b and p′t(4) = t − 1, we have
8a+ b = t− 1. Hence a = 1

16
(3t− 4) and b = 1

2
(−t+ 2). Thus,

pt(x) =
3t− 4

16
x2 +

−t+ 2

2
x.

The y-coordinate of the vertex of Pt will be given by the formula

pt

(
−b
2a

)
= pt

(
4t− 8

3t− 4

)
=

(t− 2)2

4− 3t
.

In order to find the lowest possible y-coordinate of the vertex of Pt, we need

to find the minimum value of the function f(t) = (t−2)2
4−3t , when t ∈ [−1, 1].

The derivative of f(t) with respect to t is given by the formula

f ′(t) =
−3t2 + 8t− 4

(4− 3t)2

and hence, f ′(t) = 0 when t = 2 or t = 2
3
. Since 2 /∈ [−1, 1] and

f(1) = 1, f(−1) =
9

7
, f

(
2

3

)
=

8

9
,

we conclude that the lowest possible y-coordinate of the vertex of Pt is 8
9
.

Problem 2. Inside a square of side 2 there are 7 polygons each of area 1.
Show that there are 2 polygons that overlap over a region of area at least 1

7
.
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Solution. Let P1, P2, ..., P7 be the 7 polygons and denote by |R| the area
of the region R. Assume that any 2 of them share an area < 1/7. Then

|P1 ∪ P2| = |P1|+ |P2| − |P1 ∩ P2| > 2− 1/7 = 13/7,

|P1 ∪ P2 ∪ P3| = |P1 ∪ P2|+ |P3| − |(P1 ∪ P2) ∩ P3| > 13/7 + 1− 2/7 = 18/7.

Following the pattern, the union of all polygons will cover an area more than

18/7 + 1− 3/7 = 22/7,

22/7 + 1− 4/7 = 25/7,

25/7 + 1− 5/7 = 27/7,

27/7 + 1− 6/7 = 28/7 = 4.

But the area of the square is 4 and the polygons cannot cover an area more
than 4. Hence, our assumption is false and the opposite statement is true.

Problem 3. Consider two matrices A (m × n) and B (n × m) with real
entries, such that m ≥ n ≥ 2. Assume there exist an integer k ≥ 1 and real
numbers a0, a1, ..., ak such that

ak(AB)k + ak−1(AB)k−1 + · · ·+ a2(AB)2 + a1(AB) + a0Im = Om,

ak(BA)k + ak−1(BA)k−1 + · · ·+ a2(BA)2 + a1(BA) + a0In 6= On,

where Im, In are the identity matrices and Om, On are the zero matrices of
the corresponding sizes. Prove that a0 = 0.

Solution I. Assume a0 6= 0. Divide the first identity by a0 and factor AB:

AB

(
−ak
a0

(AB)k−1 − ak−1
a0

(AB)k−2 − · · · − a2
a0

(AB)− a1
a0
Im

)
= Im.

It follows from this that AB is invertible, and since it is an m ×m matrix,
it has to have rank m. So rank(AB) = m ≥ n. However, using the rank
inequality, we know that m = rank(AB) ≤ min{rank(A), rank(B)} ≤ n, so
we have that m = n and A,B,AB, and BA are all invertible square matrices.

After multiplying the identity

ak(AB)k + ak−1(AB)k−1 + · · ·+ a2(AB)2 + a1(AB) + a0In = On
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to the left with B and to the right with A we obtain

ak(BA)k+1 + ak−1(BA)k + · · ·+ a2(BA)3 + a1(BA)2 + a0(BA) = On.

Finally, after multiplying the whole expression by (BA)−1 we obtain that

ak(BA)k + ak−1(BA)k−1 + · · ·+ a2(BA)2 + a1(BA) + a0In = On,

which contradicts the hypothesis. Therefore a0 = 0.

Solution II. Observe that (AB)j = A(BA)j−1B for any j ≥ 1 and thus, the
first equation gives

A
(
ak(BA)k−1 + ak−1(BA)k−2 + · · ·+ a1In

)
B = −a0Im

and if we denote ak(BA)k−1+ak−1(BA)k−2+· · ·+a1In by L, the two equations
can be written as

ALB = −a0Im, LBA 6= −a0In.

If a0 6= 0, it follows that A is the matrix of a surjective linear map from Rn

onto Rm and since m ≥ n, we deduce that m = n and A is invertible. In
particular, A commutes with LB and thus, the second condition contradicts
the first one. This proves that a0 = 0.
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CCSU Regional Math Competition, 2016

SOLUTIONS II

Problem 4. Show that the area of the region MXYNUZ equals the area

of the parallelogram ABCD where the lines
←→
AY ,

←→
BZ,

←→
NU are perpendicular

to the line
←→
AU and the lines

←→
DX,

←→
NY are perpendicular to the line

←→
AY . The

segments DX, BZ meet at the point M and their endpoints are on the sides
of the polygon AY NU as in the figure.

Solution I. The components of the vector
#    »

AB are AY , AZ and the compo-
nents of the vector

#    »

AD are AX, AU . Hence, the area of the parallelogram
ABCD is the determinant

det

(
AY AX
AZ AU

)
= AY × AU − AX × AZ.

The area of the region MXYNUZ is the difference between areas of two
rectangles: AY NU and AXMZ, and this difference agrees with the deter-
minant above, proving the statement.

Solution II. If R is a region in the plane, then by |R| we will denote its
area. Since two triangles with the same base and height have the same area,
|ABY | = |AMY | and |ADU | = |AMU |. Since each diagonal splits the
rectangle into two triangles of the same area, we conclude that
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|MXYNUZ| = 2|MUZ|+ 2|MXY |+ 2|BND|,
|MXAZ| = |MAX|+ |MAZ|,
|BAY | = |MAX|+ |MXY |,
|ADU | = |MAZ|+ |MUZ|,
|ABD| = |AY NU | − |ADU | − |BAY | − |BND|.

Combining these equations we conclude that

|ABD| = |AY NU | − |MAZ| − |MUZ| − |MAX| − |MXY | − |BND|

= |AY NU | − |MXAZ| − 1

2
|MXYNUZ| = 1

2
|MXYNUZ|.

Since |ABCD| = 2|ABD|, our claim is proved.

Solution III. Denote the intersection point between the segments MX and

AB by S and the intersection point between the line
←→
AB and the perpendic-

ular from D to
←→
AB by P (see the figure below). Let also the line through

S parallel to
←→
AY intersect AZ at A′ and Y B at B′. Notice that 4AXS

and 4BMS are similar and therefore AX ×MS = XS ×MB and since
AX = ZM and MB = XY , we have MZ ×MS = XS × XY . Therefore
ZMSA′ and XY B′S have the same areas, thus MXYNUZ and A′B′NU
have the same areas. Now notice that 4AY B and 4DPS are similar and
therefore AY ×DS = AB ×DP . Since AY = A′B′, we have that A′B′ND
and ABCD have the same areas. The proof is completed.
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Solution IV. Solution without words.

Problem 5. Compute the integral∫ π/4

0

ln(1 + tan x)dx.

Solution. Using the identities

1 + tan x =
sinx+ cosx

cosx
,

ln

(
sinx+ cosx

cosx

)
= ln(sinx+ cosx)− ln cosx,

sinx+ cosx =
√

2 sin
(π

4
+ x
)
,

we separate the given integral into three parts as follows:∫ π/4

0

ln(1 + tanx)dx

=

∫ π/4

0

ln(sinx+ cosx)dx−
∫ π/4

0

ln cosx dx

=

∫ π/4

0

ln
(√

2 sin
(π

4
+ x
))

dx−
∫ π/4

0

ln cosx dx

=

∫ π/4

0

ln
√

2 dx+

∫ π/4

0

ln
(

sin
(π

4
+ x
))

dx−
∫ π/4

0

ln cosx dx

=
π ln
√

2

4
+

∫ π/4

0

ln
(

sin
(π

4
+ x
))

dx−
∫ π/4

0

ln cosx dx.
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The change of variables x = π
4
− t shows that the last two integrals are equal

and therefore they cancel out. Thus, the answer is π ln
√
2

4
= π ln 2

8
.

Problem 6. Let f be the function defined recursively by f(0) = 1 and
f(n) = 1 + nf(n − 1) for each positive integer n. Find the smallest prime
divisor of f(4× 30 + 2016).

Solution. For any prime number p and nonnegative integer k we can
prove by induction on r that

f(kp+ r) ≡ f(r) mod p

for any nonnegative integer r. The base case r = 0 follows from

f(kp) = 1 + kpf(kp− 1) ≡ 1 mod p

and f(0) = 1. The induction step “r implies r + 1” follows from

f(kp+ r + 1) = 1 + (kp+ r + 1)f(kp+ r) ≡ 1 + (r + 1)f(r) mod p

and f(r + 1) = 1 + (r + 1)f(r). Observe that p could be also any positive
integer. Since N = 4× 30 + 2016 = 2136 satisfies the following congruences

N ≡ 0 mod 2, N ≡ 0 mod 3, N ≡ 1 mod 5,

N ≡ 1 mod 7, N ≡ 2 mod 11, N ≡ 4 mod 13,

and f(0) = 1, f(1) = 2, f(2) = 5, and f(4) = 65 ≡ 0 mod 13, we conclude
that f(N) satisfies the following congruences

f(N) ≡ 1 mod 2, f(N) ≡ 1 mod 3, f(N) ≡ 2 mod 5,

f(N) ≡ 2 mod 7, f(N) ≡ 5 mod 11, f(N) ≡ 0 mod 13.

Therefore the smallest prime divisor of f(2136) is 13.
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