Central Connecticut State University 33rd Annual Sports Medicine Conference 2018

Disclaimer

- No financial incentive or royalties associated with this presentation
- No product representation or off-label use of any device associated with this presentation

Objectives

- Understand the pathoanatomy of common and uncommon joint dislocations
- Understand the concepts of reduction techniques
- Awareness of the potential sequella of joint dislocations over time

Making the complex simple	
Complexity of Dislocations Robert S. Washamiz MD	
Nover 3. w assanut 2м11 Orthopedic Surgery & Sports Medicine	

" I've got a lot of years to live after baseball and I would like to live them with the complete use

Functional Stability Essential joint mobility hinges on the balance of *stability* vs. *force*• Stability • Force

- Dynamic
 Muscular control of agonists & antagonists

- F=ma
 Velocity
 Acceleration
 Deceleration
 Axis of rotation
 Load to failure

Mechanical Failure

- Force exceeds capability of the joint to dissipate energy or to compensate by displacing load to another site
 - Something has to give, resulting in:

Joint Dislocation

Injury severity range

Subtle injury may appear "minor" with athlete desiring an immediate return to play

Major occurrence can be limb threatening with associated long-term consequences

Any Joint is Susceptible

- Number of joints in the body Types
 - Variable 250-350

 - 86 skull66 thorax76 spine & pelvis32 each upper limb31 each lower limb
- Fibrous
 Synarthrodial
- Cartilagenous Synchondroses or symphyses
- Synovial
 Diarthrosis

Synovial Joint inge • Flexion/extension • Saddle • Flexion/extension/adduction/abduction/fadduction/abduction/circumduction ivot • Rotation of one around the other all & Socket • Flexion/extension/adduction/abduction/circumduction * Gliding • Gliding movements • Elipsoid • Similar to ball & socket less motion

Epidemiology of Dislocations Gleno-humeral joint 45% of all dislocation visits to the ER Anterior dislocation 96-98% Finance of the foliable of the first of the 10-30-305 of the first of the second of the first of the

Epidemiology of Dislocations Patello-femoral joint 3% of knee injuries are acute traumatic patellar dislocations - glass, Auch Deeps Bore D. Burke, Ribbert Standards, Robert St. Caseron, Genecht., 2018-MACO, Technology and Genecht

Epidemiology of Dislocations

Epidemiology of Dislocations

• Wrist

Epidemiology of Dislocations

- Interphalangeal (IP), metacarpophalangeal (MCP)

Average age group: 15-19 years old

Epidemiology of Dislocations

- Hin
 - Posterior 90%: anterior 10%
 - High impact: MVA's (sports, fall from height)

- 95% associated injury to another body part
 - (Clegg, Travis E.; Roberts, Craig S.; Greene, Joseph W.; Prather, Brad A. 'Hip dislocations-Epidemiology, treatment, or

Epidemiology of Dislocations

- Foot and ankle
 - Most common injury: ankle *sprain* involving anterior talofibular ligament (ATFL)
 - (Ringleb, Stacie I.; Dhakal, Ajaya; Anderson, Claude D.; Bawab, Sebastain; Paranjape, Rajesh (2011-10-01). "Effects of laters learned sectioning on the stability of the policy and subtable long". Journal of Orthogoetic Research. 29 (10): 1459-1464.)
 - Tibio-talar joint
 - · Lisfranc's join

Common Dislocations in Sports

- Shoulder
- Elbow
- Finger
- Knee
- Patell

Sports Health, 2014 May; 6(3): 246-255.
In-game Management of Common Joint Dislocations
Nathan W. Skelley, MD,T Jeremy J. McCormick, MD,T and Matthew V. Smith, MDT

Shoulder Dislocations

- Most commonly dislocated joint
- Accounts for 54.9% of sports-related dislocations in High School athletes
 Mark 27 Game CL Commons 9 Endemology of dislocations responsibles among US high school officers. In July Proc 2011.
- Majority are anterior inferior direction

Shoulder Dislocations

- - Large sphere on shallow socket

 - Capsuloligamentous restraints
 Muscular forces of RC (SS/IS/TM/SS)
- MOI
 - Forceful ABD & ER

Shoulder Dislocations

- Load to failure

 - HH drives forward
 Capsuloligamentous restraint fails

Shoulder Dislocations

- - Adducted "cradle" or "droop" position of arm
 - Feel humeral head anterior/inferior/medial position
- Feel dimple or soft-spot inferior to acromial arch

Shoulder Dislocations

- - Labrum Humeral Head Glenoid

 - Articular cartilageLigamentous restraintsNeurovascular structures

Shoulder Dislocations

- Reduction technique
 - Traction/counter-traction
 - Longitudinal traction with progressive abduction while manipulating humeral head
 Scapular rotation

 - Prone positioning with gentle traction

 Benjamin H. Hang BT. Common acute upper extramely injuries in sports. Clin Pediatric Emerg Med. 2007;8(1):11-20)
 - Delayed reduction difficult because of muscular spasm

Shoulder Dislocations • Long term sequela • Recurrent instability • Osteoarthritic joint progression

Elbow Dislocations • Second most commonly dislocated joint • Postero-lateral dislocation in 90%

• Anatomy • Unique trochoginglymus joint • Hinge point • Humero-ulnar articulation • Rotational point • Humero-radial articulation • Capsuloligamentous restraints • Muscular insertion points • MOI • Extension overload

Elbow Dislocations • Load to failure • Extension • Hyperextension • Rotatory instability • Joint disruption • Progressive translation • Stable • Perched • Dislocation • Character Street Avenue (1), Market (1

Elbow Dislocations • Evaluation • Exquisite pain • Obvious deformity • Skin dimpling • Neurovascular exam

Elbow Dislocations njury • "Ring" of soft tissue restraints surrounding joint are disrupted • Lateral collateral ligament • Anterior capsule • Medial collateral ligament • Associated coronoid fx • Neurovascular structures

Elbow Dislocation Reduction technique Can be difficult Anatomy of joint Muscular contraction Degree of elbow flexion with traction to "jump" humerus over coronoid/olecranon into fossa Two-person

Elbow Dislocations • Long term sequela • Recurrent instability • "Contracture" • Osteoarthritic joint progression

Finger Dislocations Common, often "underreported" 9% of all sports injuries Glichite seasons of house of pints of pints (1972) Hand & wrist injuries commonly associated with finger injuries Outroom of help for Solition augusteed of common observable for the help for t

Finger Dislocations • Evaluation • Pain, deformity • Neurovascular exam • Often will reduce by athlete "grabbing" their own finger and pulling

Finger Dislocations

- Reduction technique

 - · Recreate deformity

 - Counter pressure
 - Reduce into alignment

Finger Dislocations

- DIP sequela

 - Compromised ROM

Finger Dislocations

- PIP sequela
 Swelling
 Stiffness

 - Retinaculum & collateral ligament overpull

Hip Dislocations • Rare injury pattern in sports • Extremely important to recognize • Require emergent identification and transport to a facility for proper treatment

Hip Dislocations

- Contained ball & socketDeepened by labrumSignificant muscle layers

- High energy impact with hip & knee flexed
- Posterior displacement from anterior to posterior directed force

Hip Dislocations • Load to failure Hip in flexed position Anterior — posterior force Capsulolabral failure 2 Possible acetabular fx Dislocation posteriorly often "locked" over posterior rim of acetabulum

Hip Dislocations

- - Hip held in flexed and internally rotated position
 - Affected leg appears shorter than contralateral side
 - Painful limited ROM especially any attempt to externally rotate leg

Hip Dislocations

- - Posterior acteabular rim fx
 - Femoral head shear fx (Pipkin)

Hip Dislocations

- Reduction technique

 - Supine position, knee flexed to 90
 Axial traction on leg
 Downward counter pressure on pelvis/ASIS
 Gradual traction to reduce femoral head over acetabular rim into acetabulum
 Appropriate facility and sedation

Hip Dislocations

- Long term sequela
 - Avascular necrosis (AVN) of femoral head
 - AVN rates variable reports, ranging from 10-30%
 - · Osteoarthritic progression
- (Hip instability.Smith MV, Seklya JKSports Med Arthrosc. 2010 Jun;
- (Sideline management of common dislocations. Hodge DK, Safran HDCorr Sports Had Page 2002 June 1/21/14/9 55

Knee Dislocations

- Uncommon in sports
- Extremely significant injury
 High association with
- High association with popliteal artery injury (20%-40%) and peroneal nerve injury
 - (Surgical Management of Knee Dislocations, Harner CD, Waltrip RL, Bennett CH, Francis KA, Cole B, Irrgang JJ, J
 - (Henrichs A, J Athl Train. 2004 Oct-Dec; 39(4):365-9.)

Knee Dislocations

- Anatomy
 - Femoral & tibial articulation
 - Ligaments (ACL, PCL, MCL, LCL)
 - Popliteal artery trifurcation posterior
 - Peroneal nerve lateral
- MOI
 - Fixed foot position with anterior-to-posterior directed force
 - Land on extended knee with off-balance rotational axial load

Knee Dislocations

- Load to failure
 - Posterior force on tibia/axial load rotation of tibia under femur
 - Ligament failure
 Subluxation
 Dislocation

Knee Dislocations

- - Mal-aligned/angular deformity of knee

 - Neurovascular compromise

Knee Dislocations

- - Multiple ligament failure
 - Meniscus/cartilage injury

Knee Dislocations

- Reduction technique
 - Traction with anterior/posterior/medial/ lateral translation depending on direction of dislocation
 - Reduce to extension
 - Neurovascular exam pre- and post-reduction

Knee Dislocations

- Warrants urgent evaluation to document vascular status
 - CT angiographyVascular consult/serial vascular examination
- MRI
 - Determine soft tissue/ligament injury

Knee Dislocations

- Short term sequela
 - Vascular status of extremity: potentially limb threatening
 - Nerve injury: sensory paresthesias, motor weakness (footdrop)
- Long term sequela
 - Vascular compromise: amputation
 - Nerve injury: motor/sensory changes
 - Knee instability

Knee Dislocations

- Injury can auto-reduce
 - High index of suspicion if there is multi-planar instability on exam, or if neurovascular compromise is noted on the "reduced" knee

Patella Dislocations

- Patella is the largest sesamoid bone
- Unique anatomy/attachments

 - Quadriceps
 Patellar tendon
 Medial & lateral retinacula
 Medial patellofemoral ligament (MPFL)

Patella Dislocations

- Anatomy

• Direct contact to medial or lateral side of knee

Patella Dislocations

- Load to failure

 - Quadriceps contraction loads knee (vector force)

 - Twist/rotation/contact
 Lateral dislocation (most common)

Patella Dislocations

- - Extreme pain
 Patella located lateral to anterior knee
 Heard or felt a "pop"

 - Common spontaneous auto-reduction

Patella Dislocations

- MPFL tear
 Medial retinacular disruption
 Patellar shear fx
 Patellar articular facet
 damage (chondral injury;
 loose body)

Patella Dislocations • Reduction technique • Medially directed force with knee in extension

Patella Dislocations • Long term sequela • Recurrent instability • Subluxation/dislocation • Patellofemoral joint osteoarthritic progression

Ankle Dislocations • Sprains: common; 45% of athletic injuries • Dislocations: uncommon • Dislocations: uncommon

Ankle Dislocations • Anatomy • Tibia-Fibula-Talus articulation • Mortise • Ligament stability • ATFL, CFL, Deltoid • MOI • Foot planted, rotation, contact

Ankle Dislocations • Load to failure • Axial load • Force translation • Rotation • Ligament disruption • +/• Fx • Dislocation

Ankle Dislocations • Evaluation • Obvious deformity with malalignment and possible rotation or displacement of foot relative to tibia

Ankle Dislocations

- - Direction of dislocation determines structures that can be damaged
 Ligaments
 - High association with fibula and/or medial malleolus fx

Ankle Dislocations

- Reduction technique

 - Firm grasp of heel in conjunction with stabilizing lower tibia
 Recreate direction of injury with traction, attempting to reduce ankle under tibia
 May be unstable if associated fx
 May not be reducible on the field

Ankle Dislocations

- Long term sequela

 - Progressive osteoarthritic change

Complex Dislocations My 2 cents... Dislocations are usually obvious Sometimes they aren't Subtleties Something just doesn't seem right Nuances

Complex Dislocations Awareness & Diligence • Lunate/Perilunate wrist injury • Luxatio Erecta of the shoulder

Lunate/Perilunate Injury

- MOI: Progressive rotatory instability with extension and axial load
- Limited ROM
- Vague pain in wrist
- ? Deformity
- Neurovascular compromise
 - Median nerve (carpal tunnel)

Lunate/Perilunate injury Mayfield classification • X-ray evaluation

Lunate/Perilunate Injury

- Reduction (urgent)

 - Local/sedation
 Distraction and/or rotation
 Palmar pressure on lunate to rotate back into carpus

- - S-L ligament repair
 Scaphoid fracture ORIF
 Supplemental pins to stabilize associated ligamentous instability

Luxatio Erecta

- MOI: Forced hyper-abduction in traumatic fall
- Significant pain
- Limited ROM
- Unable to reduce in the field (do not attempt)
- Nero/vasc compromise • Axillary nerve palsy

Luxatio Erecta • X-ray evaluation • Conscious sedation in ER for reduction

Luxatio Erecta • Long-term sequela • Axillary nerve palsy • Decreased sensation lateral upper arm • Motor weakness

Complexity of Dislocations

There is nothing "routine" about joint dislocation & reduction

- Rewa
- Attempt at reducing dislocation may cause undue pain or complicate the injury
- Understand the anatomy
- Limited sideline imaging options and anesthesia
- Reduce pain
- Minimize potential neurovascular compromise
- Improve post-injury care

Comfort Zone

- Understand what "Scope of Practice" means
- No specific "rules" regarding acute treatment and/or reduction of joint dislocation
- ATCs and MDs should be aware of local guidelines and regulations (variations may exist from state to state)

Simplicity of Dislocations

- Comfort level is gained by
- When in doub
- Understanding the anatomy
- Knowledge of reduction techniques
- Colint
- tecimiques
- . Cond

Current Sports Medicine Reports
May 2002, Volume 1, Issue 3, pp 149–155|
Siddline management of common dislocation
*Duncan K. Hodge

Sports Heath, 2014 May, 6(3): 246–255. do: 10.1177/1941738113499721 n-game Management of Common Joint Dislocations Nation W. Shelby MD.* Jeromy J. McCornick MD.* and Manthew V. Smith.

Thank You