Central Connecticut State University
33rd Annual
Sports Medicine Conference
2018

Disclaimer

- No financial incentive or royalties associated with this presentation
- No product representation or off-label use of any device associated with this presentation

Objectives

- Understand the pathoanatomy of common and uncommon joint dislocations
- Understand the concepts of reduction techniques
- Awareness of the potential sequella of joint dislocations over time
Making the complex simple...

Complexity of Dislocations

Robert S. Waskowitz, MD
Orthopedic Surgery & Sports Medicine

I’ve got a lot of years to live after baseball and I would like to live them with the complete use of my body.

Sandy Koufax

Functional Stability

Essential joint mobility hinges on the balance of stability vs. force

- Stability
 - Dynamic
 - Muscular control of agonists & antagonists
 - Static
 - Ligamentous restraints with fixed points of range

- Force
 - Fins
 - Velocit
 - Acceleration
 - Deceleration
 - Acts of friction
 - Load on failure
Mechanical Failure

- Force exceeds capability of the joint to dissipate energy or to compensate by displacing load to another site
 - Something has to give, resulting in:
 - Subluxation
 - Dislocation
 - Fracture dislocation

Joint Dislocation

Injury severity range

- Sublime
 - Subtle injury may appear "minor" with athlete desiring an immediate return to play
- Gruesome
 - Major occurrence can be limb threatening with associated far-term consequences

Any Joint is Susceptible

- Number of joints in the body
 - Variable 250-350
 - 66 skull
 - 66 thorax
 - 76 spine & pelvis
 - 32 each upper limb
 - 31 each lower limb

- Types
 - Fibrous
 - Synarthrodial
 - Cartilaginous
 - Synchondroses or symphyses
 - Synovial
 - Diarthrosis
Synovial Joint
- **Hinge**
 - Flexion/extension
- **Pivot**
 - Rotation of one around the other
- **Ball & Socket**
 - Flexion/extension/adduction/abduction/internal & external rotation
- **Saddle**
 - Flexion/extension/adduction/abduction/abduction
- **Condyloid**
 - Flexion/extension/adduction/abduction/adduction
- **Gliding**
 - Gliding movements
- **Ellipsoid**
 - Similar to ball & socket, less motion

Epidemiology of Dislocations
- **Gleno-humeral joint**
 - 45% of all dislocation visits to the ER
 - Anterior dislocation 96-98%
 - High recurrence rate associated with age, hyperlaxity and associated greater instability
 - *Gleno-humeral joint*:
 - Anterior dislocation 96-98%
 - High recurrence rate associated with age, hyperlaxity and associated greater instability

Patello-femoral joint
- 3% of knee injuries are acute traumatic patellar dislocations
- High re-dislocation rate: 15%
Epidemiology of Dislocations

- Elbow
 - 90% posterolateral dislocations

Epidemiology of Dislocations

- Wrist
 - Lunate and perilunate dislocations most common

Epidemiology of Dislocations

- Finger
 - Interphalangeal (IP), metacarpophalangeal (MCP)
 - Male incidence: 17.8/100,000 person years
 - Female incidence: 4.65/100,000 person years
 - Average age group: 15-19 years old

* - (name, year, title, etc.): Title. Description. Source.
Epidemiology of Dislocations

• Hip
 - Posterior 90%; anterior 10%
 - High impact: MVA's (sports, fall from height)
 - 93% associated injury to another body part

• Foot and ankle
 - Most common injury: ankle sprain involving anterior talofibular ligament (ATFL)
 - Tibio-talar joint
 - Lisfranc's Joint

Common Dislocations in Sports

• Shoulder
• Elbow
• Finger
• Hip
• Knee
• Patella
• Ankle
Shoulder Dislocations

- Most commonly dislocated joint
 - [Reference](https://journals.sagepub.com/doi/abs/10.1177/1941738117713780)

- Accounts for 54.9% of sports-related dislocations in High School athletes
 - [Reference](https://www.sciencedirect.com/science/article/pii/S0041139517300572)

- Majority are anterior inferior direction
 - [Reference](https://www.ncbi.nlm.nih.gov/pubmed/26265161)

- Anatomy
 - Large sphere on shallow socket
 - Capsuloligamentous restraints
 - Muscular forces of RC (CSS/IS/TMS/SIS)

- MOI
 - Forceful ABD & ER

- Load to failure
 - HII drives forward
 - Capsuloligamentous restraint
 - HII translation
 - Subluxation
 - Dislocation
Shoulder Dislocations

- Evaluation
 - Adducted “cradle” or “groop” position of arm
 - Feel humeral head anterior/inferior medial position
 - Feel clump or soft spot inferior to acromial arch
 - Check axillary nerve function

Shoulder Dislocations

- Injury
 - Labrum
 - Humeral Head
 - Glenoid
 - Articular cartilage
 - Ligamentous restraints
 - Neurovascular structures

Shoulder Dislocations

- Reduction technique
 - Traction/counter-traction
 - Longitudinal traction with progressive abduction while manipulating humeral head
 - Isocapton traction
 - Prone positioning with gentle traction
 - Modified Neer traction,Reset traction, C-arm fluoroscopy traction
 - Delayed reduction difficult because of muscular spasm
Shoulder Dislocations

- Long term sequelae
- Recurrent instability
- Osteoarthritic joint progression

Elbow Dislocations

- Second most commonly dislocated joint
 - Postero-lateral dislocation in 90%

Elbow Dislocations

- Anatomy
 - Unique trochoginglymus joint
 - Lunate point
 - Humeral articulation
 - Radial point
 - Humeroulnar articulation
 - Capsuloligamentous restraints
 - Muscular insertion points
 - MOI
 - Extension overload
Elbow Dislocations

- Load to failure
 - Extension
 - Hyperextension
 - Rotary instability
 - Joint disruption
- Progressive translation
 - Stable
 - Perched
 - Dislocation

Elbow Dislocations

- Evaluation
 - Exquisite pain
 - Obvious deformity
 - Skin dimpling
 - Neurovascular exam

Elbow Dislocations

- Injury
 - “Ring” of soft tissue restraints surrounding joint are disrupted
 - Lateral collateral ligament
 - Anterior capsule
 - Medial collateral ligament
 - Associated coronoid fx
 - Neurovascular structures
Elbow Dislocation

- Reduction technique
 - Can be difficult
 - Anatomy of joint
 - Muscular contraction
 - Degree of elbow flexion with traction to “jump” humerus over coronoid/olecranon into fossa
 - Two-person

Elbow Dislocations

- Long term sequela
 - Recurrent instability
 - “Contracture”
 - Osteoarthritic joint progression

Finger Dislocations

- Common, often “under-reported”
- 9% of all sports injuries
- Hand & wrist injuries commonly associated with finger injuries
- [Reference 1]
 - [Reference 2]
Finger Dislocations

- Anatomy
 - DIP
 - PIP
 - MCP

- MOI
 - Outstretched position, open-hand & grabbing techniques
 - Extension
 - Hyperextension
 - Axial load

Finger Dislocations

- DIP
 - Collesal ligaments
 - Dorsal to volar "U" to "V"
 - Central pivot
 - Volar plate

- PIP
 - Collateral ligaments
 - Dorsal or volar "H" to "U"
 - Central pivot
 - Volar plate

- MCP
 - Intrinsics-ligaments
 - Dorsal or volar "H" to "U"
 - Volar plate

Finger Dislocations

- Evaluation
 - Pain, deformity
 - Neurovascular exam
 - Often will reduce by athlete "grabbing" their own finger and pulling
Finger Dislocations

- Reduction technique
 - Distraction
 - Recreate deformity
 - Axial traction
 - Counter pressure
 - Reduce into alignment

Finger Dislocations

- DIP sequela
 - Swelling
 - Stiffness
 - Compromised ROM

Finger Dislocations

- PIP sequela
 - Swelling
 - Stiffness
 - Compromised ROM
 - Central slip injury
 - Boutonnière Deformity
 - Retinaculum & collateral ligament overpull
 - Swan Neck Deformity
Hip Dislocations

- Rare injury pattern in sports
- Extremely important to recognize
- Require emergent identification and transport to a facility for proper treatment

Hip Dislocations

- Anatomy
 - Centraled ball & socket
 - Deepened by labrum
 - Significant muscle layers

- MOI
 - High energy impact with hip & knee flexed
 - Posterior displacement from anterior to posterior directed force

Hip Dislocations

- Load to failure
 - Hip in flexed position
 - Anterior = posterior force
 - Capsulolabral failure
 - Posterior acetabular fx
 - Dislocation posteriorly often “locked” over posterior rim of acetabulum
Hip Dislocations

- Evaluation
 - Hip held in flexed and internally rotated position
 - Affected leg appears shorter than contralateral side
 - Painful limited ROM especially any attempt to externally rotate leg

- Injury
 - Capsulolabral tear
 - Posterior acetabular rim fx
 - Femoral head shear fx (Pijlin)
 - Sciatic nerve injury
 - Vascular supply to femoral head

- Reduction technique
 - Supine position, knee flexed to 90
 - Axial traction on leg
 - Downward counter pressure on posterior ASIS
 - Gradual traction to reduce femoral head over acetabular rim into acetabulum
 - Appropriate facility and sedation
Hip Dislocations

- Long term sequela
 - Avascular necrosis (AVN) of femoral head
 - AVN varies variable reports, ranging from 10-30%
 - Osteoarthritic progression

Knee Dislocations

- Uncommon in sports
- Extremely significant injury
- High association with popliteal artery injury (20%-40%) and peroneal nerve injury

Knee Dislocations

- Anatomy
 - Femoral & tibial articulation
 - Ligaments (ACL, PCL, MCL, LCL)
 - Popliteal artery trifurcation posterior
 - Peroneal nerve lateral

- MOI
 - Fixed foot position with anterior-to-posterior directed force
 - Land on extended knee with off-balance rotational axial load
Knee Dislocations

• Load to failure
 • Posterior force on tibia/axial load rotation of tibia under femur
 • Ligament failure
 • Subluxation
 • Dislocation

Knee Dislocations

• Evaluation
 • Mal-aligned/angular deformity of knee
 • Extreme pain
 • Neurovascular compromise

Knee Dislocations

• Injury
 • Multiple ligament failure
 • Meniscus/cartilage injury
 • Posterolateral corner injury
 • Fracture
 • Popliteal artery
 • Peroneal nerve
Knee Dislocations

- Reduction technique

 - Traction with anterior/posterior/medial/lateral translation depending on direction of dislocation
 - Reduce to extension
 - Neurovascular exam prev and post-reduction

Knee Dislocations

- Warrants urgent evaluation to document vascular status

 - CT angiography
 - Vascular consult/serial vascular examination
 - MRI

- Determine soft tissue/ligament injury

Knee Dislocations

- Short term sequela

 - Vascular status of extremity: potentially limb threatening
 - Nerve injury: sensory paresthesias, motor weakness (footdrop)

- Long term sequela

 - Vascular compromise: amputation
 - Nerve injury: motor/sensory changes
 - Knee instability
Knee Dislocations

- Injury can auto-reduce

 • High index of suspicion if there is multi-planar instability or exam, or if neurovascular compromise is noted on the "reduced" knee

Patella Dislocations

- Patella is the largest sesamoid bone

 • Unique anatomy/attachments
 - Quadriceps
 - Patellar tendon
 - Medial & lateral retinacula
 - Medial patellofemoral ligament (MPFL)

Patella Dislocations

- Anatomy
 - Note: MPFL

- MOI
 - Acceleration/deceleration with foot planted and change of direction
 - Direct contact to medial or lateral side of knee
Patella Dislocations

• Load to failure
 • Foot plant
 • Quadriceps contraction loads knee (vector force)
 • Twist/rotation/contact
 • Lateral dislocation (most common)

Patella Dislocations

• Evaluation
 • Knee held in flexion
 • Extreme pain
 • Patella located lateral to anterior knee
 • Heard or felt a “pop”
 • Hemarthrosis
 • Common spontaneous auto-reduction

Patella Dislocations

• Injury
 • MPFL tear
 • Medial retinacular disruption
 • Patellar shear fx
 • Patellar articular facet damage (chondral injury; loose body)
Patella Dislocations

- Reduction technique
- Medially directed force with knee in extension

Patella Dislocations

- Long term sequelae
 - Recurrent instability
 - Subluxation/dislocation
 - Patellofemoral joint osteoarthritic progression

Ankle Dislocations

- Sprains: common; 45% of athletic injuries
- Dislocations: uncommon
Ankle Dislocations

- **Anatomy**
 - Tibia-Fibula-Talus articulation
 - Meniscus
 - Ligament stability
 - ATFL, CFL, deltoid

- **MOI**
 - Foot plantar, rotation, contact

Ankle Dislocations

- **Load to failure**
 - Axial load
 - Force translation
 - Rotation
 - Ligament disruption
 - +/– fx
 - Dislocation

Ankle Dislocations

- **Evaluation**

 - Obvious deformity with malalignment and possible rotation or displacement of foot relative to tibia
Ankle Dislocations

- Injury
 - Direction of dislocation determines structures that can be damaged
 - Ligaments
 - High association with fibula and/or medial malleolus fx

Ankle Dislocations

- Reduction technique
 - Firm grasp of heel in conjunction with stabilizing lower tibia
 - Retrace direction of injury with traction, attempting to reduce ankle under tibia
 - May be unstable if associated fx
 - May not be reducible on the field

Ankle Dislocations

- Long term sequelae
 - Instability
 - Progressive osteoarthritic change
Complex Dislocations

My 2 cents...

• Dislocations are usually obvious

• Sometimes they aren’t
 • Subtleties
 • Something just doesn’t seem right
 • Nuances
 • Mechanism of injury

Complex Dislocations

Awareness & Diligence

• Lunate/Perilunate wrist injury

• Luxatio Erecta of the shoulder

Lunate/Perilunate Injury

• MOI: Progressive rotatory instability with extension and axial load
• Limited ROM
• Vague pain in wrist
• ? Deformity
• Neurovascular compromise
 • Median nerve (carpal tunnel)
Lunate/Perilunate injury

- Mayfield classification
- X-ray evaluation

Lunate/Perilunate Injury

- Reduction (urgent)
 - ER
 - Local sedation
 - Distraction and/or rotation
 - Palmar pressure on lunate to rotate back into carpus

- Plan of care
 - Associated injuries
 - Scaphoid fracture ORIF
 - Supplemental pins to stabilize associated ligamentous instability

Luxatio Erecta

- MOI: Forced hyper-abduction in traumatic fall
- Significant pain
- Limited ROM
 - “Touch Down” sign
- Unable to reduce in the field (do not attempt)
- Nerve/vascular compromise
 - Axillary nerve palsy
Luxatio Erecta

- X-ray evaluation
- Conscious sedation in ER for reduction

Luxatio Erecta

- Long-term sequelae
 - Axillary nerve palsy
 - Decreased sensation lateral upper arm
 - Motor weakness

Complexity of Dislocations

There is nothing "routine" about joint dislocation & reduction

- Risk
 - Attempt at reducing dislocation may cause undue pain or complicate the injury
 - Understand the anatomy
 - Limited sideline imaging options and anesthesia

- Reward
 - Reduce pain
 - Minimize potential neurovascular compromise
 - Improve post-injury care
Comfort Zone
• Understand what “Scope of Practice” means
• No specific “rules” regarding acute treatment and/or reduction of joint dislocation
• ATCs and MDs should be aware of local guidelines and regulations (variations may exist from state to state)

Simplicity of Dislocations
• Comfort level is gained by
 • Understanding the anatomy
 • Knowledge of reduction techniques
 • Experience
• When in doubt
 • Stabilize
 • Splint
 • Send

Thank You