Concussion & the Possible Consequences

Christine Baugh, PhD, MPH
Post-Doctoral Fellow in Mental Health Policy
Harvard Medical School

Conflict Statement
• I have no financial conflict of interest
• All views are my own

Roadmap
• What is a concussion
• Incidence/prevalence
• Long-term effects
• Human studies
• Animal studies
• Future directions
Concussions

What is a concussion?
- Diffuse
- Invisible; no biomarker
- Microscopic
- Metabolic
- Axonal
- No biomarker
* Concussion is a transient neurometabolic injury that typically resolves in under 2 weeks

Signs & Symptoms

Acute symptoms vary:
- Time to presentation
- Duration
- Severity
- Type
- By sex, age, etc.

"Once you've seen one concussion... you've seen one concussion."
Signs & Symptoms

- Difficulty thinking clearly
- Feeling slowed down
- Difficulty concentrating
- Difficulty remembering new information
- Headache
- Balance problems
- Loss of memory
- Sensitive to noise or light
- Irritability
- Nausea
- Dizziness
- Difficulty concentrating

Concussion Epidemiology

- 1.6-2.8 million concussions sustained annually in the U.S.
- Figures may be an underestimate as concussions are underreported and underdiagnosed; some studies suggest that >50% go unrecognized.
- In recent years, the number of diagnosed concusion has increased in some populations.

More to come...
Concussion v. repetitive brain trauma

Chronic Traumatic Encephalopathy (CTE)
The latest on CTE

• Neuropathological diagnosis

The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy

• No Tau, no Aß Tau, no Aß and Aß depths of sulcus
CTE is unique neuropathology

- Normal: No Tau, no AD
- CTE: Tau, no AD
- Alzheimer's disease: Tau and AD

Sections double immunostained for Aβ and tau.

Stages of Tau Pathology

- Stage I: mean age: 76.7 ± 13 years
- Stage II: mean age: 64.1 ± 16 years
- Stage III: mean age: 64.7 ± 14 years
- Stage IV: mean age: 74.4 ± 12 years

McKee et al, 2013, Brain
Clinical Presentation of CTE

Clinical presentation of chronic traumatic encephalopathy

Eveline S. Tima, PhD
Robert V. Haines, PhD
Christa M. Hiles, BA
Dennis M. Raph, MD
Robert W. McCrohon, Jr.

Abstract

Objectives: The goal of this study was to examine the clinical presentation of chronic traumatic encephalopathy (CTE) in neurologically confirmed cases.

Methods: Thirty-one adult male subjects were selected from all cases of neuropathologically confirmed CTE at the Boston University Center for the Study of Traumatic Encephalopathy brain bank.

Results: Clinical presentation less well understood. Symptoms correlated with CTE fall in 3 domains:
- Cognition (e.g., memory difficulties)
- Mood (e.g., depression, anxiety)
- Behavior (e.g., explosivity)
The latest on CTE

- Football Players Diagnosed with CTE, convenience sample

The latest on CTE

- The punchline:
 - In convenience sample of posthumously examined brains from individuals who played football, there was a high rate of CTE
 - More severe CTE was more frequently found in individuals who played at a higher level and individuals who died at an older age
- The caveats:
 - Referral bias, recall bias, no comparison group, etc.

Gaps in knowledge

- Human studies leave many unanswered questions:
 - True incidence/prevalence of concussion
 - Incidence/prevalence of CTE; no in vivo diagnosis
 - Causal relationship between brain trauma and CTE
 - Causal relationship between football and/or CTE pathology and associated symptoms
 - Definitive claims of progressive nature of pathology or clinical symptoms
Gaps in knowledge

• Human studies leave many unanswered questions:
 • True incidence/prevalence of concussion
 • Incidence/prevalence of CTE, no in vivo diagnosis
 • Causal relationship between brain trauma and CTE pathology
 • Causal relationship between football and/or CTE pathology and associated symptoms
 • Definitive claims of progressive nature of pathology or clinical symptoms

Animal model of TBI & CTE

• Weight dropped (54.3gm bolt) onto head
• Head free to rotate
• Measure loss of consciousness time
• Measure cognitive function

<table>
<thead>
<tr>
<th>Animal Model of TBI & CTE</th>
<th>Challenges</th>
<th>Beyond CTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takeaways:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Repeat brain injury, in short succession, causes CTE-like tau accumulation</td>
<td>• Generalizability of animal model to humans unclear</td>
<td>• Depression</td>
</tr>
<tr>
<td>• CTE-like tau accumulation causes some behavioral symptoms in mice</td>
<td>• Similar experiments in humans unethical or infeasible</td>
<td>• Anxiety</td>
</tr>
<tr>
<td>• Antibody induced removal of tau reverses behavioral symptoms to some extent</td>
<td>• Change in game/exposure over time</td>
<td>• Executive Dysfunction</td>
</tr>
<tr>
<td></td>
<td>• Hard to find appropriate “control” group for NFL athletes for purposes of comparison</td>
<td>• Physical Activity</td>
</tr>
<tr>
<td></td>
<td>• …and many more</td>
<td>• Team-building</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Social Support</td>
</tr>
</tbody>
</table>
Thank you

Special thanks to my many colleagues and collaborators, especially Dr. Ann McKee who shared many of the CTE images that were included in this presentation.